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Abstract. During the European project COST ES0601 (HOME) a new homogenigation method, ACMANT
hag been developed for the automatic homogenization of monthly temperatures. ACMANT turned out to be
one of the best performing methods durmg the blind test experments of HOME. The methodological develop-

ment of ACMANT has been contmued smce then, and nowadays ACMANT is likely the best homogenisation

method for large and spatially dense temperature datasets. Ensemble moving param eter experiments have been

done to obtain more mformation about the performance of ACMANT. The HOME Benchmark was used astest

dataset, thus the results of the latest experniments with ACMANT are comparable with the performance of the

other homogenisation methods participated mn HOME. The results mdicate that the performance of ACMANT

1 generally not sensitive to its parameterisation, 1.e. the change of the performance 1s generally small for quite

awide range of each parameter. The presented methodology of moving parameter experiments provides results

m a fast and easy to evaluate form.

1 Introduction

In the time series of clinatic obszervations, temporal biases
from the true macroclimatic characteristics often occur due
to technical, personal or environmental changes. With the ho-
mogenisation of time series, the frequency and magnitudes
of such biases can be reduced. Tune series homogenisation
can be done with the uze of documentary mformation about
the changes m the settmgs of the observation or with statis-
tical procedures or with the combination of both (Aguilar et
al, 2003; Auer et al., 2005, etc.). When the gpatial density
of observing sites and the spatial correlation of the obgerved
values are high, data quality can be significantly improved
by statistical homogenisation. The conditions mentioned are
generally met for European and North American tempera-
ture data from the last century (Menne and Williams, 2009,
Domonkos and Stepanek, 2009).

A large number of statistical homogenisation methods
have been developed in the last decades. Between 2007 and
2011 action COST ES0601 (HOME, www.homogenisation.
org) was dedicated to test the efliciency of the existing meth-
ods and foster further methodological developments. Under
HOME, an international blind test experiment was organised,
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m which MASH (Szentinrey, 1999), PRODIGE (Caussinus
and Mestre, 2004), USHCN (Menne and Williams, 2009),
Craddock-test (Craddock, 1979) and ACMANT (Domonkos,
2011a, hereafter D2011) produced the best results in ho-
mogenizing monthly temperature data (Venema et al., 2012).
The development of ACMANT has been continued since the
blind tests, and ag ACMANT ig a fully automatic method,
its performance can be objectively tested also in non-blind
mode. The aim of the present study is to examme the sensi-
tivity of the performance of ACMANT to its param eterisa-
tion, becange low gensitivity could confirm the leading posi-
tion of ACMANT, while high sensitivity would indicate the
uncertainty i the rank order of method efficiencies. The ef-
ficiency tests were made with ensemble moving parameter
experiments, which is a ugeful tool for testing antomatic and
gemi-automatic methods (McCarthy et al,, 2008; Tichner et
al., 2009; Williams et al, 2012). The methodology that we
present allows the fast and easy evaluation of the results,
theretfore we recommend its use also to the examination of
other antomatic algorithms. The paper allows insight also
mto the theoretical aspects of the latest developments and
the performance of the newest version of ACMANT.
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The organization of the paper 12 as follows. In Sect. 2, the
latest development of ACMANT ig presented. In Sect. 3, the
methodology and the results of the moving parameter exper-
iment are presented. Fmally, in Sect. 4, the rezults and the
further tagks ahead the method developers are digcusged and
the conclusions are summarised.

2 ACMANT

The full description of the first version of ACMANT (Ap-
plied Caugsinusg-Mestre Algorithm for homogenising Net-
works of Temperature series) hag already been published
(D2011). That version was referred as ACMANT late by
Venema et al. (2012) and ACMANT~v1 in web. However, the
method has been developed since then. Here, the structure
of ACMANT will be briefly described first, then the recent
changes will be presented in details.

2.1 Structure of ACMANT

The ACMANT was developed on the basis of detection
and comrection algorithms m PRODIGE. PRODIGE was se-
lected, because its inhomogeneity detection part and correc-
tion method (Caussinus and Mestre, 2004) have been turned
out to be highly effective m comparizon with many other
methods (Domonkos, 2011b; Domonkos et al., 2013). How-
ever, ACMANT differs from PRODIGE m many details, first
of all ACMANT uses reference series mstead of pauwise
comparisons and ACMANT 1s fully automatic.

In ACMANT reference series (1e. sertes with which the
go-called candidate series iz compared to find the mho-
mogeneities in the series of spatial differences) are pre-
homogenised before the mam detection part. During pre-
homogenisation, the use of the candidate series of the Main
Detection is excluded from the calculation of adjustment-
terms, thus double use of the same spatial connection is
not allowed m ACMANT. Both in the pre-homogenisation
and in the Main Detection, the optimal step function fitting
with the Caussmus—Lyazrhi criterion iz applied (Caussmus
and Mestre, 2004). However, anovelty of ACMANT is that
change-pomts are searched with bivariate tests, namely joint
statistics of the annual means and summer-winter differences
are examined (D2011). Correction-terms are always calcu-
lated with ANOVA (Caussmus and Mestre, 2004). After the
main detection, further mhomogeneities are searched on a
monthly scale. Outlier-filtering and filling of gaps of time
series are applied three times m ACMANT: first, before pre-
homogenisation, second, after pre-homogenisation and third,
together with the final adjustments; see further details in
D2011.

2.2 Latest development of ACMANT

Two kinds of development have been applied to ACMANT
smee its publication (D2011). One of these changes 15 that
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m the new ACMANT, ANOVA ig applied algo m the pre-
homogenigation, while the other ig the introduction of filter-
mg of outlier periods. Together with these changes, the Sec-
ondary Detection 12 alzo modified.

2.2.1 Calculation of adjustment-terms

In the new ACMANT, ANOVA ig always applied and thus
unified relative time geries, ag well ag all that were written
m Sectg. 3.3.4 and 3.6.2. of D2011 are no longer included n
ACMANT.

ANOVA ig applied in three modes m ACMANT: (a) In the
pre-homogenization it is applied on annual values at an out-
lier filtering step, (b) In the pre-homogenisation it is applied
on annual values and with the exclusion of the further candi-
date series for preparing reference series to the Main Detec-
tion and (c) After the Main Detection and after the Secondary
Detection it iz applied on monthly data See the description
of ANOVA model in Cangginug and Mestre (2004).

2.2.2 Filtering of outlier-periods

Outlierperiods could be also referred to as short-term mho-
mogeneities, smce their model is a short-term platform-like
biag from the coirect values. In such platforms the bias i
constant for the outlier-period. In the real world the magni-
tude of the bias could vary within the period, go the platform
i¢ only a model Note, however, that Domonkos (2011b) re-
ported that observed temperature series of Hungary can be
modelled well with the mclusion of a large number of shoit-
term, platform-shaped inhomogeneities. Note also that shoit-
term mhomogeneities can be detected only when the size of
the bias ig large, since with the shortening of the duration
of biases the signal to noige ratio worgens. So that, the aum
of the filtermg of outlier-periods is to filter the short-term,
large biases from time series. Both the detection and the cor-
rection of outlierperiods are more siilar to the common
outlier-filtering than to the inhomogeneity detection.

In ACMANT, filtering of outlier-periods 1z applied for 2—
30 month long periods always atter the common outlier fil-
termg. The maxmum length of such periods 1s controlled by
a parameter (1, Table 1), its value was between 18 and 30
m the latest examinations. The values of the detected outlier-
periods are treated in the same way as data gaps or outliers,
and the mterpolation of Sect. 3.2 m D2011 15 applied to them.
However, for outlier-periods reaching a grven threshold (22),
the starting and endmng dates of outlier-periods are consid-
ered as change-pomts in the final calculations of correction-
terms by ANOVA.

In searchmg outlier-periods, relative time series are used
on monthly scale. First the values are standardised, 1.e. they
converted to have 0 mean and 1 standard deviation. Note
that seasonal cycles had been filtered earlier (¢ Eq. 4 m
D2011). The standardized relatrve tune series are denoted
with E =[], 23,...epy], the length of series with nm and
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Table 1. Moving parameters and their values in the experiments. Six values are allowed for each parameter. In column “basic”™ the values in

ACMANTvVI (D2011) are shown.

basic 1 2 3 4 5 6
el outlier-p.: max. effective window (month) - 18 20 22 24 27 30
c2 distance between change-points (month) - 3 4 5 6 8 10
c3 sigmficance threshold in outlier p. filtering - 160 200 250 320 420 460.0
o4 outlier period: power of duration - 0.5 06 07 08 09 1.0
o5 outlier p.: length of outer periods (month) - 24 24 24 36 36 36
o6 outlier period: correction for seasonality - 010 015 020 030 040 050
o7 outlier period: precision of timung {month)  — 6 8 10 12 15 18
o8 summer—winter difference 050 025 033 042 050 059 0.67
¢®  pre-homogenisation, penalty-coeflicient 10 10 12 14 16 18 20
¢10  Secondary Detection, penalty coeflicient 10 10 125 1.3 18 23 3.0
ell  overlap of relative time series (vear) o 5 7 8 9 10 12
c12  window wadth in Secondary Det. (month) G0 36 42 50 G0 70 80
c13  MAS threshold 20 16 18 2.0 22 24 2.6
cl4  MAI10 threshold 1.4 1.2 1.3 1.4 1.5 165 18
¢15  mun. length for harmonic fimetions (month) 10 8 9 10 12 14 16
¢16  Main Detection, monthly precision (month) 25 17 21 25 20 33 37
el7  r-threshold for 2 reference composites 0.5 0.7 08 08 085 10 1.0
c18  r-threshold for 3 reference composites 0.5 0.5 0.6 0.7 07 0.7 0.8
c19  r-threshold for 4 reference composites 0.5 04 048 06 06 0.5 0.6
c20  r-threshold for 5 reference composites 0.5 04 04 0.5 5 04 0.5
gection means with upper stroke. Futher denotations: / —
length of outlier period, { and ; — starting and ending months
(regpectively) of the outlier-period in the first estimation, #z &= 8 g5.8-1 T €51 1.Ejac5 — 81,8 (2)
—number of summer months (of June, July or August) in the
outlier-period, #; — number of winter monthg (of January, ! = intmax (! —c6lmy — ). 1+ (1 —c6)i — 1)) (3)
February or December) in the outlier-period, nt — integer
part, ggn — gign of expression, mod — module 12, 23, ¢4, .. Further conditions are that
are parameters.
Only one outlier-period ig identified and selected in a par- sen(g;.8; — 8 c5.6i1) = SEW(&7.85 — 814 1.854c5) (4)
ticular step, i.e. the one with the most significant statistic
(23). Then itz values are adjusted (temporal adjustments, oS =z 24 (3)
which are valid only i the section of filtering the outlier- . )
- - mod(c5) =0 (6)

periods), and further outlier-periods are searched as long as
at leagt one can be found with significant statistic. The iden-
tification of an outlier-period comprizes two phages. In the
first phase (A), the most gignificant outlier-period of the time
gerieq is zelected and a first estimate 12 made for itg position.
In the second phasze (B) the starting and ending months of the
outlier-period are determined.

Phage (A): the outlier-period with the maximal £3 is
gearched for each i, j pairs (1 < 7 — i < 30) of standardized
relative time series. If more than one relative time series are
available for a given i, J pair, always the one with the high-
est sum of gquared correlations of the reference composites
i¢ gelected for the exammation.

c3 =42 (1)

where « (magnitude-characteristic) and [ (duration-

characterigtic) are determined by Eqs. (2) and (3):

www.adv-sci-res.net/10/43/2013/

Phasze (B): the first and last months of the outlier-period are
re-estimated with fitting optimal step-function i window
[2i—c5. 2j1c5]. This procedure iz made in the same way as in
the Secondary Detection (see Sect. 3.5.2. n D2011) with
the exception that golutions with exactly two change-points
are accepted only, and the first and second change-points
are expected in the periods [ —¢7,i— 1] and [/, j+c7—1].
respectively. So that, the final duration of an outlier-period
i# equal or greater than the pre-estimated duration. If the
resultant duration is longer than c1, then the temporary
adjustment iz applied for allowmg the search of fuither
outlier-periods, but otherwise such outlier periods are left
out of consideration.
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Notes:

a. Qutlier-periods can be detected also m the ends of
time series, and slightly different rules are applied for
them. At the ends of the series Eq. (4) cannot be ex-
pected, ¢35 =36, m phase B the window around the
pre-estimated position is not symmetric and exactly 1
change-pomt 1s searched m that phase.

b. 25 has a minmum threshold for providing a relatively
large sample-size of the surrounding values in the eval-
uation of the deviation of a pre-aggsumed outlier-period.
Naturally, too great values for 5 are not advisable, ei-
ther.

c. Equation (6), as well as the consideration of »2; and
my are necessary due to the seasonal behaviour of
mhomogeneity-caused biases. Otherwize a long-term
mhomogeneity with large bias in the seasonal cycle
could be detected as short-term outlier-period when a
geasonal peak of the long-term bias and random noise
accidentally add up.

d. The role of 21 is to separate which biases are consid-
ered short-term outlier-periods and which are consid-
ered long enough to be treated by the main detection
part of ACMANT.

e. In Eq. (3) the coefficient of (/ — 1) 15 1 — 6. It 15 an arbi-
trary choice, the coeflicient could be mdependent from
6.

2.3 Modification in the Secondary Detection

Parameter 2 (gee Sect. 2.2) i uged algo in the Secondary
Detection to separate outlier-periods from more persistent in-
homogeneities. If the period between two adjacent change-
pointsg ig shorter than ©2, then that period is treated in the
game way ag outlier-periods detected by Eqg. (1)—(6).

3 Moving parameter experiments

Moving parameter expermnents have been done to examme
the sensitivity of the performance of ACMANT to changes
i its parameterisation, as well as to find optimal parameter
values if thig sensitivity 1s significant. An objective was to
vary each of the arbitrarily set parameters of ACMANT that
might influence its performance.

3.1 Methods

3.1.1 Moving parameter experiments

Twenty parameters of ACMANT were varied. Seven from
the twenty are defined in Sect. 2.2. of this study, while we
refer to D2011 presenting the definition of the others: 8 is
the coeflicient of summer—winter difference (c% m Eq. 25).

Adv. Sci. Res., 10, 43-50, 2013

9 and 10 are coeflicients for the penalty term of the
Caugsinug—Lyazrhi criterion in the Pre-homogenization and
the Secondary Detection, respectively (Eq. 26). ¢11 i the
length of overlap when more than one relative time series are
used (Eq. 28). 212 ig the window width m the Secondary De-
tection (Sect. 3.5). 013 (¢14) 1g the threshold for accumulated
anomaly MAS (MA10) (Sect. 3.5.1). ¢15 12 the mmimum du-
ration for fitting harmonic functions i the Secondary Detec-
tion (Sect. 3.5.2), ag well ag in the new vergion, algo in de-
termining the position of outlier period. =16 ig the length of
the period in which the timing of change-pomt iz expected
m the monthly precigion section (Sect. 4, Part I, point 4).
©17...220 are minimum thresholds for the spatial correla-
tion of mcrement-geries (7). In the previous versiong of AC-
MANT two reference components with » = 0.5 was zatisfac-
tory to derive relative time series. In the prezent experiments
varioug thresholds of » are applied according to the number
of reference composites. £17, ¢18, £19 and £20 are thresholds
for the cagzes of 2, 3, 4 and 5 reference composites, respec-
tively. 217, 218, 19 and 220 indicate four conditions for the
reference composites, and reference series wag built when at
least 1 condition of them was met.

Two thousand experments were made, each with the 20
networks of the swrogated temperature section of HOME
benchmark. All the listed param eters were varied randomly,
but only six values were allowed for each parameter (except
for £5, for that parameter only 2 values seemed applicable).
Hereafter we refer to the six allowed values ag value =17,
value 27, etc. The restriction to six values allows us to eval-
vate the mpact of any of the twenty parameters with the com-
parigon of s1x sub-gsamples, m which the examined parameter
18 constant.

The values of ¢17, 218, ¢19 and 20 were mutually de-
pendent in the experment m a way that if 17 had value “a”,
=18, 219 and 220 also had the values*“c”, so m reality only six
sets of values were allowed for them. Due to this dependence,
these parameters and their effects were jointly examined.

Table 1 presents the 20 parameters each together with a
key-word referring to its role m ACMANT, with its value
m ACMANTv1 (D2011) and with its values m the moving
parameter experiments. It can be seen that each parameter is
varied m a rather wide range.

3.1.2 Efficiency measures

We apply four efliciency measures: (1) root mean squared
error (RMSE) of monthly values (°C), (11) RMSE of an-
nual values (°C), (1) RMSE of individual trend-slope biases
(°C/100yr) and (1v) RMSE of network-mean trend-slope bi-
ages (°C/100 yr). All these measures characterise the residual
errors in homogenised series, the first three are for the entire
period of time series, while type (1v) is for period 1925-1999.
For visualising the improvement m the data accuracy due to
the use of ACMANT, raw data errors, and the residual er-
rors after the blind homogenisation of HOME with various
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Figure 1. The sensitivity of residual errors to parameter ¢8. (a) Trend bias of station series, (b) trend bias of network-mean series, (¢) RMSE

of monthly values, (d) RMSE of annual values.

methods (Venema et al., 2012) are also presented n some
figures. The mvolved homogenisation methods of the HOME
experiments are PRODIGE, MASH, USHCN and C3-SNHT
(Venema et al., 2012}, since apart from ACMANT, they pro-
duced the highest efficiency for the entire smrogated dataset.
In HOME, only 15 networks from the 20 were evaluated
formerly, and for monthly and annual residual errors Centred
RMSE (CRMSE) were used (Venema et al., 2012). Thege dif-
ferences did not result in visible deviations of the efliciencies
presented in our study, relative to the HOME results.

3.2 Results

The moving parameter experiments proved the generally low
sensitivity of ACMANT to its parameterisation. For most pa-
rameters, there are no significant differences of performance
with changes of the value within the range examined. For
the other parameters slight but significant declines of perfor-
mance can be obgerved in one or both tails of the exammed
parameter ranges. The relatrvely highest sensitivity of perfor-
mance 15 to o8 (Fig. 1), and for this param eter the basic value
(ACMANTv], Table 1) 1= clearly suboptimal However, even
in this case, the sensitrvity 12 still moderate.

ACMANT has a generally high efficiency m homogenis-
ing temperature series and the moving parameter experi-
ments described allows us to characterise the stability of the
performance of ACMANT. Figures 2-5 present the results in

www.adv-sci-res.net/10/43/2013/

comparison with the raw data errors and with the remaining
errors after the HOME experiments with four homogenisa-
tion methods. Each of Figs. 2-5 shows the results of AC-
MANT m three columns. The first column shows the results
of all the 2000 experunents, thus it mcludes also the exper-
ments with suboptimal parameter values. For the second col-
umn, expermments with seven suboptiunal parameter values
ave excluded, but each basic parameter value (Table 1) is re-
mamed m the accepted parameter ranges. For the last col-
umn, further four parameter values are excluded and two of
them are basic parameter values in ACMANTv1. As at least
one of the excluded parameter values frequently occurred,
only 496 (197) experments remamed suitable for column 2
(column 3) of Figs. 2-5. The excluded parameter values from
columns 2 and 3 (only column 3) are as follows. ¢3: value
17, o4 6T (), 28 ST e (A7), €9: 5T, 6 (1), 212
“17, (c17—20: “6"). Figures 2—5 show that ACMANT gen-
erally has the highest performance among the exammed ho-
mogenisation methods. The advantage of ACMANT is even
more enhanced when some suboptinal parameter values are
excluded.

The advantage of ACMANT is not the same m the ex-
amined efficiency measures. In the residual emrors of trends
of station data (Fig. 2), PRODIGE and MASH have smilar
performance to that of ACMANT, although m the right col-
umn 95 % of the results with ACMANT are better than those
with any other method. In estimating network-mean trends

Adv. Sci. Res., 10,43-50, 2013
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Figure 2. Boxplot of the residual errors in trend biases of station
sertes after homogemsing with ACMANT the HOME surrogated
temperature data. Left colummn 1s for all the 2000 experuments, wlule
for the nuddle and night columns some suboptimal parameters are
excluded. Boxes include the values between 5 and 95 percentiles.
Raw data errors and residual errvors after blind homogemsation with
various methods vnder HOME are also shown.

raw data error: 0.49°C
0.773 ' ' '
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053 SHHT
T "

0.3 - acH

001 . . .
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RMSE (°C/100yr)

Figure 3. The same as Fig. 2, but for trend biases m network mean
series.

(Fig. 3) the lead of ACMANT i even more dominant than
i estimating trends of station data. On the other hand, the
gcattering of the results 1 great (except in the right column),
and in the least succesgful experiments with ACMANT the
regidual error is as large as m the raw data.

The most mportant novelty of ACMANT ig the harmon-
ization of the work between monthly and annuval scales. As
a congequence, the regidual monthly RMSE (Fig. 4) ig al-
ways the best with ACMANT, more precizely, the worst re-
gult among the 2000 experiments with ACMANT equals to
the result of the second best method (PRODIGE). The resid-
val annual RMSE (Fig. 5) hasg similar features than the pre-
vious efficiency measureg, i.e. the results with ACMANT are
the best except for a few experiments with suboptimal pa-
rameter values in ACMANT.

Adv. Sci. Res., 10, 43-50, 2013
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Figure 4. The same as Fig. 2, but for the RMSE of monthly values.
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Figure 5. The same as Fig. 2, but for the RMSE of ammual values.

4 Discussion and conclusions

The results of the moving parameter experiments prove that
the good performance of ACMANT late reported m Venema
et al. (2012) is not for the overfitting of its parameters, since
the performance has low sensitivity to the parameterisation.
The high performance 1z a stable characteristic of ACMANT
and it 1z a consequence of its good methodological properties.

The results mdicate that after excluding some subopti-
mal parameter values, ACMANT always performs better
than any other homogenisation methods m homogenising
monthly temperatures. However, this result must be treated
with some reservations, since (1) Twenty networks 1 a rel-
atively small sample, becange the efficiency of homogenis-
mg station series 1s strongly mterdependent within networks;
(1) The HOME benchmark dataset captures well some char-
acteristics of observed temperature data, but it does not mean
that the frequency and magnitude distribution of mhomo-
geneities and some other characteristics are the same m each
observed temperature dataset; (11) Not all the known ho-
mogenisation methods are tested in HOME and even the
tested methods could produce better results m repeated ex-
ammations either due to thewr new developments, or acciden-
tally. Note here that relymg on the experiences of HOME,
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the new homogenisation method HOMER. has been devel-
oped (Mestre et al., 2013). Moreover, a new, automatic ver-
gion of MASH has been reported, az well az Climatol and
RHTest also have newly developed versions (www.clinatol.
eu/DARE).

For the reasons listed above, further tests are needed to
confirm or deny the leading pogition of ACMANT. However,
some other open questions seem to be even more important
than the rank order among the best homogenizgation methods.
The efficiency of any homogenisation method strongly de-
pends on the number and spatial correlations of time series in
networks and on the frequency and other characteristics of n-
homogeneities az well. When one or more of these character-
istics are unfavourable, homogenigation could even worzen
the data quality. For mstance, it happened to the monthly pre-
cipitation data in the HOME experiments. The leszon of that
failure iz not that monthly precipitation data cannot be ho-
mogenigzed, but it iz that the succesgful homogenization has
alzo gome conditions others than applying good statistical
methods. Our present knowledge iz yet linited in this field,
what means that at present we cannot quantify the necessary
conditions. Similarly, we cannot separate confidentially the
tasks for automatic homogenisation from the ones for man-
val homogenisation with mtensive metadata use. We have
the general knowledge that while huge datagets can hardly
be homogenised manually, in case of small number of time
geries the human control iz always advigable. However, this
qualitative knowledge ig not always sufficient to make op-
tunal decisions in the selection of methods, theretore further
tests are necessary to widen our knowledge in this field. Tests
with automatic homogenisation methods can be executed rel-
atively easily and their results are partly applicable also to
non-automatic methods. Domonkos (2013) describes the ob-
jectives and the expected benefits of various kinds of eth-
ciency tests, while Guyarro (2012) shows examples of com-
parative efliciency tests for various automatic homogenisa-
tion methods.

Our main conclusions are as follows:

— The performance of ACMANT has low gengitivity to the
parameterigation of the method.

— ACMANT is one of the best methods for homogenisging
monthly temperatures, and it iz likely the best method
for homogenising large and gpatially dense networks of
temperature data.

— Although ACMANT is only for monthly temperature
data, itz development will help in the future to improve
the efficiency of homogenisation also m other clunatic
variables and in other time resolutions.

— Further efficiency tests are needed to quantify the con-
nections between dataset properties and method perfor-
mance. First the automatic methods (such as e.g. AC-
MANT) must be tested, and their results will be partly
applicable alzo for non-automatic methods.
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