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Abstract 
 
In the COST ES0601 project (COST HOME) a benchmark temperature and precipitation dataset 
(Benchmark) was developed for assessing the efficiencies of homogenisation methods via blind 
test experiments. In homogenising temperature data, the best performance was achieved with 
ACMANT. However, ACMANT was developed with the use of the Benchmark, thus its 
observed performance is not fully comparable with the blind tests results of other methods. 
Consequently, our knowledge about the true performance of ACMANT is limited. This study 
includes a brief analysis of the theoretical properties of ACMANT, as well as presents new 
experimental results. The aim of the study is to provide more information for the objective 
evaluation of ACMANT. 
 
 
1. INTRODUCTION 
 
ACMANT (Adapted Caussinus-Mestre Algorithm for homogenising Networks of Temperature 
series) is a recently developed homogenisation method. It is applicable for monthly temperature 
series. In the blind test experiments of COST HOME an early version of ACMANT was tested. 
The early version produced outstanding results regarding the RMSE of monthly values, but it was 
rather poor in reconstructing true climatic trends (Venema et al. 2012). Later the ACMANTv1.2 
(http://www.c3.urv.cat/members/pdomonkos.html) was developed, it is referred as ACMANT 
late in Venema et al. (2012) and referred as ACMANT in this study. 
 The efficiency results that are obtained with homogenising Benchmark could be affected by 
the fact that Benchmark was used in the development of the new method. The treatment of 
seasonal changes in inhomogeneity caused biases (hereafter: station effects) is particularly 
criticised from the point of view that the properties of true observed data might considerably 
differ from the model that applied both in Benchmark and by ACMANT. Unfortunately, at 
present there is no opportunity to perform new blind tests for ACMANT that are comparative 
with other homogenisation methods. In this paper the arguments and evidences are intended to be 
collected in order to obtain the evaluation of ACMANT as objective as possible. The 
organisation of the paper deviates somewhat from the traditional form. In the next section the 
theoretical properties of ACMANT will be discussed, then a distinct section will be devoted to 
analyse the seasonal changes of station effects in temperature series. Studies about real data 
homogenisation, as well as a test experiment with data of uni-seasonal station effects are 
discussed there. In section 4 more test results with ACMANT will be presented and analysed, 
while the last (fifth) section is for synthesising the results and drawing the conclusions. 
 
 
 

http://www.c3.urv.cat/members/pdomonkos.html


2. DESCRIPTION OF ACMANT 
 
2.1. General characterisation 
 
In this section a brief description of ACMANT is provided, the full description can be found in 
Domonkos (2011a). ACMANT is a fully automatic homogenisation method what means that 
after inputting the raw data and some characteristics of the network (number of stations, length of 
time series, etc.) the execution does not need human assistance as far as the final homogenised 
data are produced by the software. 
 The most important characteristics of ACMANT are a) The harmonisation of examinations 
in different time-scales (i.e. in annual and monthly scales), b) The use of the optimal 
segmentation and Caussinus-Lyazrhi criterion in the detection of inhomogeneities, c) The use of 
ANOVA for the final corrections of inhomogeneities. 
 ACMANT has four main parts. 
 
I) Preparation. This part contains initial calculations (anomalies, spatial correlations, etc.), outlier 
filtering, as well as filling the data gaps caused by missing data and outliers. 
 
II) Pre-homogenisation. The purpose of pre-homogenisation is to filter the largest errors from the 
reference-composites of the final homogenisation. In the pre-homogenisation temporary 
adjustments are applied to reduce the station effects. Then outlier-filtering and interpolations are 
performed again using the improved data.   
 
III) Homogenisation. First the long-term biases are searched in annual scale (Main Detection), 
then with further calculations the timings of the change-points are determined in monthly scale. 
The remaining station effects are checked on monthly scale with Secondary Detection. Once the 
detection is finished, ANOVA is applied for calculating the correction terms. ANOVA also 
provides the final calculations for filling the gaps caused by missing data and outliers. 
 
IV) Final adjustments. In this step change-points with insignificant shift-sizes are excluded from 
the list of change-points, and ANOVA is applied again with the reduced set of change-points. 
 
2.2. Selected segments of ACMANT 
 
a) Building reference series from composites. 
ACMANT performs relative homogenisation. It means that before homogenisation relative time 
series are derived from the original series. A relative time series (T) is the arithmetic difference 
between the candidate series (A) and a reference series (F). The traditional way of creating 
reference series (Peterson and Easterling, 1994) is applied with a specific parameterisation in 
ACMANT. For a candidate series (g) all the other series in network (s = 1…S) are used as 
reference composites when the spatial correlation (r) with g exceeds a preset threshold. More 
precisely, r stands for the spatial correlation between the first difference (increment) series. The 
reference-composites are weighted according to the squared correlations (r2). 
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In eq. 1 [j1,j2] represents a section between years j1 and j2, i.e. eq. 1 can be applied to any period 
of the time series. In ACMANT the threshold r is 0.4, but for at least two composites r ≥ 0.5 is 
expected. Note that these thresholds are low relative to some recommendations (Alexandersson 
and Moberg, 1997, Auer et al. 2005, etc.). 
 
b) Creation of multiple relative time series 
ACMANT uses multiple relative time series, because the number of available reference 
composites often varies according to the sections of the time series. The minimum length of T 
series is 30 years. Three T series are always constructed: (i) with the highest possible  Σr2, (ii) 
with the earliest starting year, (iii) with the latest ending year. However, as criterions (i), (ii) and 
(iii) might be satisfied by the same series, the true number of T series can be lower than 3. On the 
other hand, more than three T series can be involved according to the changes in Σr2 for different 
sections of the candidate series (Domonkos, 2011a). 
 
c) Main Detection: 
Detection of inhomogeneities is always performed one-by-one for different candidate series in 
ACMANT. Optimal step-function is fitted to two annual variables, namely to the annual mean 
(TM) and amplitude of seasonal cycle (TD), and the common change-points of them are 
searched. The minimum distance between two change-points is 3 years. In other respects Main 
Detection is the same as the detection of PRODIGE (Caussinus and Mestre, 2004). 
 Eqs. 2 and 3 show the calculation of tm and td for year j. 
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Then the optimal segmentation of an L year long period into K + 1 segments is given by eq. 4. 
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Upper stroke denotes the time average for segment k, c0 is constant, its value in ACMANTv1.2 is 
1.414. 
 The number of segments is optimised by the Caussinus-Lyazrhi criterion (eq. 5, Caussinus 
and Lyazrhi, 1997). 
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d) Precision of the timings of detected IHs: 
Main Detection works on relatively long time-scale. After Main Detection more precise timings 
of change-points are searched applying 48-month symmetric windows around the pre-estimated 
timings of the change-points. Note that within such a window only 1 change-point was detected, 
since the minimum length of segments is 3 years in Main Detection. In a window, two-phase 
harmonic functions are fitted to the values, and the optimum fitting is searched. Phase-change in 
one of the 25 central months is accepted only. The timing of the phase-change in the optimum 
fitting is the final timing of the detected change-point. 
 
e) Secondary Detection: 
When after the adjustments that applied according to Main Detection results, accumulated 
anomalies still exceed some predefined thresholds, Secondary Detection is applied. 
 In Secondary Detection 60-month long sub-series of monthly values around the maximum of 
accumulated anomalies are examined. At this step the optimal segmentation is applied for the 
time averages of monthly values, but the section-means are substituted with harmonic functions 
of annual cycle for sections of minimum 10 months, and the number of segments is maximised 
by 3 for a sub-series. 
 
f) Correction: ANOVA 
In ACMANT, ANOVA is applied for calculating the final correction-terms. This procedure 
minimises the standard deviation of the homogenised data. It can be proved that ANOVA 
provides the optimal estimation of correction terms when the following two conditions exist: i) 
the climate signal is the same in the network, ii) the station effect is constant between two 
adjacent known change-points (Caussinus and Mestre, 2004). 
 
g) Pre-homogenisation: 
In ACMANT each time series are pre-homogenised in a way that in the calculation of the 
adjustment-terms for series s, series g is excluded from the process, when s is prepared to be a 
reference-composite in the final segmentation of series g. As s usually takes part in the 
homogenisation of all the other time series of the network, usually N-1 different pre-
homogenisations are performed for an individual s in a network of N stations. 
 First the order of the candidate series is set, it is from the series of estimated poorest quality 
to the series of estimated best homogeneity. The determination of the order is based on the 
estimation of maximal station effects. This step necessarily contains some arbitrary criterions 
(Domonkos, 2011a). 
 During the pre-homogenisation ANOVA is not applied, because the repetition of ANOVA 
would overuse the spatial connections among data. In the pre-homogenisation temporary 
adjustment terms are applied. These terms are calculated with the help of unified relative time 
series. 
 



h) Temporary adjustments: Unified relative time series 
A unified relative time series has the following properties: i) It covers the whole period for which 
the homogenisation of the candidate series can be performed, ii) It includes the relative time 
series unchanged for which Σr2 is the highest (it is often shorter than the whole period), it is the 
principal section, iii) The principal section is completed with other relative time series to cover 
the whole period defined by i), the latter series are complementary series, iv) The complementary 
series are adjusted before completion in a way that systematic biases due to differences of the 
spatial means of station effects for differing subsets of stations are intended to be elaborated. 
With other words, as the regional average of all stations (N) does not equal to the average of 
some subsets of Q stations (Q < N), this source of bias has to be treated in the creation of unified 
relative time series. In the early version of ACMANT that was tested in the blind test 
experiments with the Benchmark (Venema et al. 2012), the main source of trend-errors with 
ACMANT was the lack of harmonisation among relative time series. 
 
2.3. Evaluation of the theoretical properties of ACMANT 
 
I)  Factors explaining the high efficiency 
 • Optimal segmentation with the Caussinus-Lyazrhi criterion. Earlier efficiency tests of 
detection methods proved that this method performs best among the inhomogeneity-detection 
methods used in climatology (Domonkos, 2008, 2011b). The joint segmentation (Picard et al., 
2011) could have similar or even better performance, but it has not been proved yet with tests.  
 • Harmonisation of the examinations of different time-scales in the detection process. The 
signal to noise ratio is higher in low time resolution than in high resolution, but to find the precise 
timings and the occurrences of short-term biases the examinations in high (monthly) resolution is 
also necessary. This kind of harmonisation is unique in ACMANT. A particularly valuable 
novelty is the bivariate detection that yields results in monthly scale in spite of the examinations 
are made in annual scale. Note that the latter is also criticised sometimes, because the true annual 
cycles of station effects are unknown. 
 • The application of ANOVA makes the correction terms to be as accurate as possible. See 
also Domonkos et al. (2012). 
 • Pre-homogenisation is applied in a way that multiple use of the same spatial connection is 
not allowed, thus the accumulation of errors due to the repeated inclusion of a noise-term or a 
non-revealed inhomogeneity is excluded. 
 • Outlier filtering and gap filling are repeated using data of higher and higher quality during 
the homogenisation procedure. 
 
II) Weak points and doubts around ACMANT 
 • ACMANT was tested with Benchmark, and in Benchmark the station effects have 
harmonic annual cycles with maximum biases in winter and summer, thus this feature of 
Benchmark favours to ACMANT. It could be questioned how the Benchmark-model is 
applicable for real data with respect to the annual cycle of station effects. See its analysis in Sect. 
3. 
 • ACMANT uses some arbitrary parameters. These parameters were set with the help of 
Benchmark-experiments, thus the performance of ACMANT on datasets of markedly different 
properties from Benchmark is unclear. See more discussion about it in Sect. 4.2. 
 • The use of unified relative time series for calculating adjustment-factors may be 
suboptimal, since the use of homogeneous sections in pairwise comparisons could likely produce 



more accurate results. However, it is a challenge to find a good automatic subprogram of pairwise 
comparisons (although such subprogram has already been created by Menne and Williams, 
2009). Note that the unified relative time series are applied only for temporary adjustments, thus 
the undesired effect to the final efficiency is supposed to be little if any. 
 •  The use of multiple comparison might be better in the detection part than the use of one 
reference series from composites. It is a question that cannot be decided in a theoretical way, and 
the results of the Benchmark experiment are also inadequate to clarify this point, since the effect 
of the chosen method in time series comparison cannot be examined separately from the other 
characteristics of homogenisation methods. 
 
3. THE SEASONAL CYCLE OF STATION EFFECTS AND ITS IMPACT ON THE 
PERFORMANCE OF ACMANT 
 
ACMANT presumes harmonic annual cycle of station effects with extremes of biases in mid-
summer and mid-winter, therefore the adequacy of Benchmark to this respect has to be evaluated. 

In Benchmark the station effects have annual cycles of definitely harmonic shape and 
modes in winter and summer. The size of the maximum deviation has a standard normal 
distribution with 0 expected value and 0.4 °C standard deviation. Although the modes are always 
in winter and summer, the phases still have substantial variation: the modes can be in any month 
of summer and winter, and they more often occur in the beginning or ending months of seasons 
than in the middle month (Venema et al. 2012). 

In studies of the homogenisation of true observational temperature series more 
inhomogeneities were reported for summer series than for winter series (Moberg and 
Alexandersson, 1997; Drogue et al. 2005; Domonkos, 2006, Domonkos and Štěpánek 2009). 
Moberg and Alexandersson (1997) pointed on the main cause of this seasonal difference: changes 
in radiation-effects due to technical changes of the temperature observations are larger in summer 
than in winter. Czech and Hungarian temperature series were homogenized with 16 
homogenization methods (Domonkos and Štěpánek 2009), and the results show that both the 
frequency and the magnitude of station effects are the smallest in winter and the largest in 
summer. On the other hand, Moberg and Alexandersson (1997) found the largest temperature-
shifts in winter (but the highest shift-frequency in summer), Štěpánek reported the largest station 
effect for September (personal information, 2010), and according to some assessments, the mean 
magnitude of seasonal cycles is larger in Benchmark than in true observational series (Venema et 
al. 2012). Note that synoptic climatological factors might cause annual cycle of station effects in 
other way than with summer and winter modes. 
 Considering that the detection results provide only estimations of the true properties, and 
the seasonal cycles of Benchmark have some non-natural irregularity, it is hard to estimate if 
Benchmark or the true observational data favours more ACMANT regarding to the seasonal 
cycle of station effects included in them. Anyhow, it is useful to know the performance of 
ACMANT when there is no seasonal cycle of station effects at all. For this reason a special 
experiment was made with Benchmark: The monthly anomalies (from the monthly mean of a 
given series) of a given year were randomly re-ordered. The way of reordering was the same for 
each station-series and for both the homogeneous and inhomogeneous (“raw”) data. The re-
ordering was changed randomly year-by-year. In this way a dataset was created in which all the 
annual values are the same as in Benchmark, but the seasonal cycle of station effects is ceased. 
The performance of ACMANT (“ACMANTx” in Table 1) was tested in this dataset. 



Method CRMSE(m) CRMSE(a) RMSE(t) RMSE(nt1) RMSE(nt2) 
ACMANTv1.2 0.563 0.728 0.768 0.382 0.544 
ACMANTx 0.412 0.662 0.739 0.272 0.634 
PRODIGE main 0.416 0.676 0.724 0.042 0.436 
PRODIGE trendy 0.413 0.679 0.728 0.031 0.435 
PRODIGE monthly 0.431 0.693 0.735 0.093 0.426 
MASH main 0.398 0.667 0.706 0.315 0.441 
Craddock Vertacnik 0.461 0.724 0.770 0.278 0.403 
USHCN 52x 0.382 0.586 0.490 -0.124 0.102 

Table 1. Efficiencies in reducing the RMSE / CRMSE errors of the row data applying various homogenisation 
methods (1 = perfect homogenisation). CRMSE = centered RMSE (Venema et al, 2012), m = monthly, a = 

annual, t = trend slope, nt1 = network mean trend slope for 1900-1999, nt2 = network mean trend slope 1950-
1999, the description of the homogenisation methods is in Venema et al. (2011). 

 
In accordance with the expectations, the efficiencies are lower than with the true 

Benchmark, but the decline turned out to be not too large. The observed efficiencies are in the 
range of the efficiencies of PRODIGE and MASH with the true Benchmark, and the estimation 
of network-mean trend bias is even better. The efficiency for reconstructing the network-mean 
trends of 1950-1999 has increased relative to the original experiment with ACMANT, but it is 
likely a random effect due to the small sample size. The highest decline of efficiency occurred 
with the CRMSE of monthly values (from 0.56 to 0.41) but the 0.41 is still not lower than the 
efficiency of the other best methods, except Craddock-test. Note that the observed efficiencies of 
the Craddock-test are based on a partial contribution (i.e. 7 networks were homogenised from the 
available 15), therefore they are not fully appropriate for making comparisons with the results of 
full Benchmark experiments.  

When comparisons are made between the performance of ACMANT and the performance 
of other best homogenisation methods in this study, the “other best methods” are composed by 
PRODIGE main, PRODIGE trendy, PRODIGE monthly and MASH main. Although the group of 
the best methods is wider, it includes also Craddock-test, USHCN and the newly developed 
HOMER of the COST HOME team, good test results of full Benchmark experiments are 
available only for PRODIGE and MASH. There are full contributions also with USHCN, but the 
USHCN belongs to the best methods for other reason than the observed efficiencies (that are not 
too high), i.e. the USHCN has a stably low false alarm rate, which is an important positive 
feature, but out of the analyses of this study.      
 
4. FURTHER TEST EXPERIMENTS WITH ACMANT 
 
4.1. Tests with the “Big Benchmark” 
 
Big Benchmark is another (bigger) test dataset than the official Benchmark, and its creator is also 
Victor Venema. The original reason of its creation was to test the fully automatic USHCN 
software with a test dataset that is similar to the true observational temperature dataset in the 
United States. The statistical properties of Big Benchmark are similar to those of Benchmark 
with two important exceptions: (i) The Big Benchmark is much bigger than Benchmark, it 
contains 200 surrogated and 200 synthetic network, (ii) In Big Benchmark networks may contain 
9 or 15 time series, but never only 5 time series. Note that the Benchmark surrogated temperature 
dataset consists of 15 networks, and 9 of them contains only 5 time series. For this reason, 



unfortunately, test results with Big Benchmark are not directly comparable with the Benchmark 
result, although they still can be interesting. 

ACMANT was subdued to a blind test with the first 100 surrogated networks of Big 
Benchmark. The efficiency turned out to be higher than with the official Benchmark (Table 2), 
likely due to the denser networks of Big Benchmark. For making fairer comparisons, 
characteristics for subsets of fixed network-sizes are also shown. Note however, that the number 
of networks in the official Benchmark with 9 (15) time series is only 4 (2), therefore the 
opportunity to draw profound conclusions from these results is very limited. Due to the small 
sample-size in Benchmark, network-mean errors have not been calculated for subsets of fixed 
network-sizes. 
 

Test-data CRMSE(m) CRMSE(a) RMSE(t) RMSE(nt1) RMSE(nt2) 
OB, 9 series / nt 56.5 72.1 74.2   
BB, 9 series / nt 56.2 74.1 71.6   
OB, 15 series /nt 58.4 78.0 84.0   
BB, 15 series /nt 62.2 80.9 85.0   
OB, all networks 56.3 72.8 76.8 38.2 54.4 
BB, all networks 60.1 78.5 79.6 40.5 55.5 

Table 2. Efficiency characteristics with ACMANT for the official Benchmark (OB) and Big Benchmark (BB). 
nt = network, denotations in the headline are the same as in Table 1. 

 
 The results with the Big Benchmark experiment indicate that the performance of 
ACMANT is stably high for dense networks of data with high spatial correlations. The 
observable efficiency characteristics here are higher than those were achieved with the other best 
homogenisation methods during the Benchmark experiment, but for making correct comparisons 
with them, further common blind test experiments would be needed. 
 
4.2. ACMANT with changing parameters 
 
The second unit of the Caussinus-Lyazrhi criterion (sect. 2.2, eq. 5) is a penalty-term. Its effect is 
that higher number of change-points (K) is allowed only when the fitting of the step function to 
the data becomes substantially better with the increase of K. In the present experiment this 
penalty-term is supplied with coefficient p (eq. 6), and it is varied between 1 and 7 in the pre-
homogenisation part of the procedure. (In the final homogenisation p always equals 1.) 
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The effect of increasing  p is that only the most significant inhomogeneities can be filtered out 
during the pre-homogenisation. As the aim of the pre-homogenisation is just to eliminate the 
largest biases of the raw data, the application of p > 1 in the pre-homogenisation might result in 
higher efficiency than the basic version. The results of the experiment are shown in Fig. 1. In the 
figure the mean efficiencies for the other best methods are also shown for making comparisons. 
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Fig. 1. Efficiency in reducing the RMSE / CRMSE error of raw data in function of p. a) CRMSE monthly, b) 
CRMSE annual, c) RMSE of individual trends, d) RMSE of network-mean trends for 1900-1999, e) RMSE of 

network-mean trends for 1950-1999. Red horizontal lines represent the mean efficiency of full experiments 
with PRODIGE and MASH during the Benchmark homogenisation. 

 
Two maximums appear in function of p, the first is at p of 1 – 1.5, while the other is at  p of 4.5 – 
5.0. I cannot explain this double optimum, even do not know whether it would be similar for 
other datasets, or it is a peculiarity of Benchmark, more precisely the examined 15 networks of 
the surrogated temperature dataset of Benchmark. The absolute maximum of observed efficiency 
is p = 1 for the monthly CRMSE, p = 1.5 for the network-mean bias for 1950-1999, while for the 
other efficiency measures the absolute maximums are with p = 4.5. The variation of efficiency is 
small in Fig. 1a and 1b, moderately large in Fig. 1c, while quite large for network-mean biases 



(Fig. 1d and 1e). The efficiency of ACMANT is slightly higher than that of PRODIGE and 
MASH in annual CRMSE, substantially higher than that of PRODIGE and MASH in monthly 
CRMSE, while for efficiencies in trend-bias reduction this relation is parameter-dependent. 
 Finally I note that I made another experiment varying another parameter of ACMANT, 
i.e. the exponent of the denominator in eq. 42 of Domonkos (2011a), but in that case the observed 
variation of efficiency was much less than in the presented case. 
 
5. DISCUSSION AND CONCLUSIONS 
 
The study of Venema et al (2012) contains several statements about the performances of the 
methods participated in the Benchmark experiment. Now two of them about the late ACMANT 
are quoted here, for discussing if we have better understanding after the examinations presented. 
The two statements are (i) “ACMANT late contribution suggests that ACMANT is currently the 
most accurate method available”, and (ii) “ACMANT late is optimized based on the benchmark 
data itself. It is thus not clear how much of this performance would be realised in an application 
to a real dataset.” 
  First it has to be made clear that the projection of the observed efficiency results to the 
application to real data has limitation due to the differences between the surrogated data and real 
data that obviously exist in spite of the effort has been made to have the surrogate data similar to 
the real data. However, this limitation is not specific for ACMANT. An exception could be the 
harmonic annual cycle of station effects, which is exploited more intensively by ACMANT than 
by any other homogenisation method. However, the analyses of Sect. 3 proved that its effect is 
minor if any, in raising artificially the performance of ACMANT.   
 A more serious problem is that 15 networks of data is not very much either to find an 
optimum parameterisation or to achieve an accurate validation. It is because the within network 
errors are often interdependent and the distribution of the degree of errors is non-normal, but 
rather exponential. For illustrating the latter, a brief statistic of the network-mean biases for 1900-
1999 in the Big Benchmark experiment is presented here. The absolute value of the bias was 
below 0.5°C in 94 cases (from the examined 100), in four cases the bias was between 0.51 and 
0.63 (°C), but the highest two biases were 0.83°C and 1.20°C. The likely explanation is that rare 
unfavourable coincidence of change-points in different time series, missing data, as well as 
unfavourable interference with unusually high noise may result in large homogenisation errors 
even with such a sophisticated method as ACMANT. This fact limits the opportunity to draw 
final conclusions from the experiments with the 15 surrogated temperature networks, and Big 
Benchmark was examined only with ACMANT. 
 Both the Big Benchmark experiment and the parameterised examination showed that the 
performance of ACMANT is more stable with respect to the reduction of monthly and annual 
CRMSE errors than in the reduction of trend-biases. The decrease of monthly CRMSE is 
spectacularly greater with ACMANT than with any other homogenisation method, and this 
difference is not sensitive to the chosen set of parameters of ACMANT. The performance of 
ACMANT in this characteristic may fall onto the level of the other best homogenisation methods 
only when the annual cycle of biases is entirely removed from the test datasets, which is, 
however, an unrealistic condition for the observed temperature data of mid- or high geographical 
latitudes. This good result with ACMANT is a consequence of the sophisticated treatment of 
different time-scales (i.e. multi-annual, annual and monthly) from which only one piece is the 
bivariate detection with two annual variables in the Main Detection segment. 
 The main conclusions are as follows: 



  • All the examinations confirm that ACMANT belongs to the family of the best 
homogenisation methods (i. e. PRODIGE, MASH, Craddock-test, HOMER and USHCN).  
  • ACMANT is particularly effective in reducing the RMSE of monthly temperature data. 
When dense networks with high spatial correlations are treated, this favourable characteristic of 
ACMANT is very stable. This characteristic of ACMANT might have importance in the future in 
providing input data for daily data homogenisation. 
  • The performance in trend-bias reduction is more parameter-dependent than in the 
reduction of RMSE errors. The examinations presented do not seem to be sufficient to find the 
optimal parameterisation of ACMANT, thus further analyses are needed. 
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