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Abstract. The seasonal cycle of radiation intensity often causes a marked seasonal cycle in the inhomo-
geneities (IHs) of observed temperature time series, since a substantial portion of them have direct or indirect
connection to radiation changes in the micro-environment of the thermometer. Therefore the magnitudes of
temperature IHs tend to be larger in summer than in winter. A new homogenisation method, the Adapted
Caussinus – Mestre Algorithm for Networks of Temperature series (ACMANT) has recently been developed
which treats appropriately the seasonal changes of IH-sizes in temperature time series. The performance of
ACMANT was proved to be among the best methods (together with PRODIGE and MASH) in the efficiency
test procedure of COST ES0601 project. A further improved version of the ACMANT is described in this pa-
per. In the new version the ANOVA procedure is applied for correcting inhomogeneities, and with this change
the iterations applied in the earlier version have become unnecessary. Some other modifications have also
been made, from which the most important one is the new way for estimating the timings of IHs. With these
modifications the efficiency of the ACMANT has become even higher, therefore its use is strongly recom-
mended when networks of monthly temperature series from mid- or high geographical latitudes are subjected
to homogenisation. The paper presents the main properties and the operation of the new ACMANT.

1 Introduction

The investigation of climate change and climate variability
needs a large amount of observed data of high quality. In
the last decades a new branch of quality control and quality
improvement for observed data has been developed, it is the
so-called homogenisation. The purpose of homogenisation is
to filter out the effects of technical imperfectness, i.e. that of
methodological or environmental changes from the results of
observations (Aguilar et al., 2003; Auer et al., 2005; Gérard-
Marchant et al., 2008, etc.). The most frequent form of IHs
is a sudden shift (change-point) in the series of the data. The
documents of technical changes and the statistical properties
of datasets can be used for homogenising time series. Dur-
ing statistical homogenisation the spatial redundancy can be
utilised for identifying and adjusting local biases. The spa-
tial redundancy means that the same climatic sign often ap-
pears in more than one time series. Hereafter homogenisa-
tion means statistical homogenisation in this study. In spite
of the spatial redundancies, observed data contains real site-
specific differences, therefore the perfect homogenisation
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is usually impossible, but homogenisation procedures have
stochastic behaviour (Sherwood, 2007; Menne and Williams,
2009; Titchner et al., 2009, etc.). The success of homogeni-
sation depends on (i) the number and completeness of time
series and their spatial correlations, (ii) the signal/noise rate
which is influenced by the spatial correlations, the standard
deviation of the data, and the size of IHs, (iii) the ability of
homogenisation methods to identify the timings of change-
points, (iv) the ability of homogenisation methods to treat
with multiple structures of IHs, (v) the way of adjusting time
series for detected IHs. In this study the characteristics of a
new homogenisation method, the Applied Caussinus-Mestre
Algorithm for homogenising Networks of Temperature series
(ACMANT), are discussed. At the time of the submission of
this paper, the ACMANT is still in progress. In this paper
only some important parts of the method are shown in detail.
The full description of the method will be published once the
method is finished. However, a tested preliminary version of
the method is already available for interested users. For more
information one can contact the main author.
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The main novelty of the ACMANT is that the seasonal
changes of IHs are modelled by harmonic functions, because
IHs in temperature data are often related to radiation changes,
and the seasonal curve of irradiation in mid- and high lati-
tudes can be approached well with harmonic functions. This
thesis is supported also by experimental results (Domonkos
and Štěpánek, 2009; Brunet et al., 2011).

2 Main properties of ACMANT

In the ACMANT the core of the detection and adjustment
methods is the same as in the PRODIGE (the method of
Caussinus and Mestre, 2004). The PRODIGE has a strong
mathematical background, and earlier studies (Domonkos,
2006), as well as the homogenisation of COST HOME
benchmark dataset (hereafter: benchmark; Venema et al.,
2010) have proved that the PRODIGE is one of the most ef-
fective homogenisation methods. With the recent develop-
ments the highest efficiencies reached earlier are now signifi-
cantly exceeded. The operational features and conditions for
the ACMANT are as follows:

i. The use of the ACMANT is recommended especially
for temperature series from mid- and high-latitudes,
since its algorithm supposes quasi-harmonic annual cy-
cle of considerable amplitude in IH-sizes

ii. A fully automated method.

iii. A relative homogenisation method, thus it can be used
only for networks, and not for single time series. Ref-
erence series are always built from a minimum of two
component series. Lengths of time series in a network
can be different, and in that case different reference se-
ries may be used for different sections of the same can-
didate series.

iv. Occurrences of data-gaps are allowed up to 83% for any
30-year inside section of time series, and unlimitedly in
the tails of the series (inside section means that there are
no data gaps at the edges of the section).

v. The ACMANT contains separate segments for filling
data-gaps and substituting outlier values. Missing data
are never filled before (after) the first (last) observed
value of time series.

vi. The input data-field for the ACMANT: Monthly tem-
perature characteristics with monthly time resolution.
The lengths of the original time series may be differ-
ent, but the data-fields of each series are required to be
converted into a common format (which format includes
the same number of data for each temperature series) in
a way that missing values are filled with −999.9. After
preparation only 4 parameters have to be introduced be-
fore application: (a) length of time series, (b) first year

of time series, (c) number of time series in the network,
(d) identifier of network.

vii. The result of homogenisation is (a) timings and sizes
of IHs for each series, (b) timings of outliers, (c) filled
data-gaps caused by missing values or outliers inside
the series, (d) homogenised time series. Sizes of IHs
are characterised with two variables: (a) shift in annual
means, (b) shift in the amplitude of seasonal cycle.

The operation of ACMANT is illustrated in Fig. 1.

3 Description of selected segments of ACMANT

A concise description of the method is provided here, and
only segments that are primarily important in achieving
higher efficiency are shown in detail.

3.1 Constructing relative time series

The spatial comparison of time series relies on the rules in-
troduced by Peterson and Easterling (1994), with some mod-
ifications in the parameterisation.

Anomaly series (A j) are created first, by subtracting
monthly means from the raw values. j is a station-identifier
( j= 1,2,...J where J stands for the total number of time se-
ries in the network). For the candidate series A j, a relative
time series (T j) is the arithmetical difference of the candidate
series and the so-called reference series (F j) (Eq. 1).

T j = A j−F j (1)

Note that in accordance with Sect. 2, (point iii.), more than
one relative time series are often created for the same candi-
date series (this is not shown in Eq. (1) to keep the descrip-
tion brief). Reference series are the weighted averages of
neighbouring anomaly series (Ai) around the candidate se-
ries where the weights are the squared spatial correlations (r)
with the candidate series (Eq. 2). Following the recommen-
dations of Peterson and Easterling (1994), the first difference
(increment) series are applied for estimating spatial correla-
tions, since in this way the estimations are less affected by
the inhomogeneities in time series.

F j =

J∗∑
i=1
r2j,i · Ai
J∗∑
i=1
r2j,i

i= 1,2,...J∗,J∗ ≤ J (2)

In the ACMANT, every Ai with r j,i ≥ 0.4 is considered for
building reference, but a minimum condition for applying
the homogenisation is that at least two reference composites
have to exist with r j,i ≥ 0.5.
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Figure 1. The operation of ACMANT.

3.2 Detecting IHs with Main Detection

Timings and sizes of IHs are searched by fitting step-
functions to two annual characteristics, i.e. to annual means
(TM) and to the range of the seasonal cycle (TD) in rela-
tive time series. Solutions with common timings of change-
points are considered only, and the minimum sum of squared
errors is searched for with the so-called dynamic program-
ming algorithm, described by Hawkins (1972) first. Note
that in the ACMANT, similarly to a large number of other
methods, gradually changing biases (i.e. trend-like IHs) are
represented as a series of change-points.

Let the length of time series be denoted by L, the num-
ber of change-points by K, their serial numbers by k (k =
1,2,...K), and their timings by yk. Note that k also shows the
serial number of the section between adjacent change-points
(Eqs. 3 and 4).

min
[y1,y2,...yK ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑
k=0

yk+1∑
i=yk+1

(tmi−TMk)2+c0(tdi−TDk)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

y0 = 0, yK+1 = L (4)

In Eq. (3) upper stroke marks time-average, and c0 = 0.5. The
minimum distance between two change-points is set to be 3
years.

For using Eq. (3) K has to be set. For selecting the most
appropriate K, the Caussinus – Lyazrhi criterion (Caussinus
and Lyazrhi, 1997) is applied (Eqs. 5 and 6).

ln

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1−

K+1∑
k=1

(yk−yk−1) ·
[
(TMk−TM)2+c0(TDk−TD)2

]
L∑
i=1

(tmi−TM)2+c0(tdi−TD)2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+w (5)

w= p
2K
L−1

ln(L) (6)

Equations (5) and (6) are calculated with each possible K,
and the K providing the minimum of term (5) is retained.
The Main Detection differs in three points from the classic
Caussinus-Mestre detection method: (i) Step functions are
fitted to two variables, (ii) the minimum distance between
two change-points is 3 time-units, (iii) an extra parameter
(p) is included in the penalty-term, and its value depends on
J. If J = 2, then p= 1.5, if J = 3, then p= 1, and if J > 3, then
p= 0.75.

The parameterisation relies on semi-empirical experi-
ences about the changes of signal/noise rate in functions of
Δy and J.

3.3 Calculation of timings of change-points with monthly
preciseness

48-month wide windows are symmetrically set around the
pre-estimated timings of change-points (from the Main De-
tection). Two-phase functions (U) are fitted to the monthly
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values of relative time series within each window. The
functions are harmonic functions of 12-month cycle in both
phases. The timing of change-point is searched in a narrower,
24-month wide window. Equation (7) shows the calculation
for calendar month m.

um =α+β
(
cAsin

2πm
12
+cBcos

2πm
12

)
(7)

Constants of cA and cB are determined in a way to have the
modus of the annual cycle in the solstices. In the optimum
fitting the sum of squared errors in the 48-month window is
minimal. The optimum values for α, β and the timing of
change-point are estimated through iterative tests.

3.4 Homogenisation-adjustment with ANOVA

In the detection process an individual IH usually causes bi-
ases in more than one time series, since during the spatial
comparison each time series is used as reference compos-
ite, and homogenizers cannot pre-assume which series are
homogeneous (if any). Therefore the calculation of cumu-
lated effects of IHs needs the use of some equation system.
In the ANOVA the observed values are considered to be a
composition of climate-effect, station-effect and noise, and
an equation-system is built and solved for the case of zero
noise. Caussinus and Mestre (2004) proved that the equa-
tion system of the ANOVA provides the best estimation of
IH-sizes. In that paper the full description of the ANOVA is
provided.

In the ACMANT the ANOVA is applied to the two annual
variables (TM and TD) separately, and thereafter monthly
adjustments are calculated as a composition of the shift in
annual mean and the relevant value of the seasonal cycle.

4 Some further details of ACMANT

The main characteristics of two further segments are pre-
sented here, these are the Pre-homogenisation and the Sec-
ondary Detection.

The aim of Pre-homogenisation is to reduce the impact
of possible large IHs in the composites of reference series.
The detection process is the same as in the Main Detec-
tion, but the way of the application is different: (i) Candi-
date series are ordered according to a pre-estimation of the
severity of inhomogeneities. This ordering is based on the
maximal absolute values of 5-year mean anomalies in rela-
tive time series. (ii) The Main Detection is applied starting
from the least homogeneous series and proceeding always
towards the more homogeneous series; (iii) Simplified ad-
justments (e.g. Alexandersson, 1986) are applied just after
the detection of IHs in one candidate series; (iv) In building
reference series for pre-homogenisation, adjusted versions of
composites are used when they are available; (v) In building
reference series for Pre-homogenisation, one time series is
excluded from taking into account as reference-composite,

namely the one for which the pre-homogenised time series
will be used as reference-composite in the Main Detection.
As one time series might be used as reference-composite for
J−1 different candidate series, J−1 pre-homogenisations are
accomplished for each time series through pre-homogenizing
J sub-networks each containing J − 1 time series. In the
step of “Building specific reference series” (Fig. 1) these pre-
homogenised series are used.

The aim of the Secondary Detection is to find and cor-
rect large-size but short-term biases caused by IHs. Series
of accumulated anomalies are examined in time series ad-
justed by the ANOVA after the Main Detection. If the ab-
solute values of accumulated anomalies exceed some arbi-
trarily given thresholds, IHs are searched for in monthly se-
ries, within a 60-month wide window symmetrically located
around the anomaly-peak. The detection method is similar
to the procedure described in Sect. 3.3, with two main dif-
ferences (i) The number of change-points can be 0, 1 or 2
within a 60-month section, and the optimal choice from these
three possibilities is determined by the Caussinus – Lyazrhi
criterion; (ii) The length of the section between two adja-
cent change-points is three months minimum, and when it
is shorter than 10 months, a constant function is fitted (with
zero amplitude of seasonal cycle). After the Secondary De-
tection the application of the ANOVA is repeated both for
TM and TD.

5 The efficiency of ACMANT

The efficiency of homogenisation procedures can be char-
acterised with the improvement in root mean squared errors
(RMSE). We calculated the RMSE characteristics of monthly
biases, annual biases and biases of linear trend-slopes for the
time series of the benchmark. The efficiency is characterised
by the rate of the decrease of RMSE due to the homogenisa-
tion, proportioned to the RMSE of raw time series (Eq. 8).

Eff=
WR−WH

WR
(8)

In Eq. (8)WR (WH) denotes the RMSE in raw (homogenised)
time series. If a homogenisation is perfect, then the efficiency
equals to 1, while in case of no change in the RMSE the
efficiency is zero. Efficiencies for the ACMANT were cal-
culated separately for the monthly, annual and trend-slope
biases. All the 40 simulated temperature networks of the
benchmark were used for the calculations. The results show
that the efficiency of the ACMANT is 0.545 in monthly
RMSE, 0.666 in annual RMSE and 0.753 in trend-slope
RMSE. These values are significantly higher than those were
achieved by any other method during the COST HOME ex-
periments. The superior performance of ACMANT stems
from three main properties: (i) The ACMANT adopts the
best detection and adjustment segments of earlier methods.
(ii) The ACMANT applies appropriate time-scales during the
detection; considering that the standard deviation is smaller
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for annual variables than for monthly variables, the appli-
cation of a relatively coarse time-resolution often yields the
best results; regarding this point, a special characteristic of
the ACMANT is that the seasonal changes of IH-sizes are
estimated with the use of two annual characteristics only.
(iii) The ACMANT has a pre-homogenisation part in which
the reference composites for a particular candidate series are
adjusted in a way that the spatial correlation between the can-
didate series and reference composites are not utilised at all.

Further verifications are still needed, because in the last
phase of the development the IHs of the benchmark were
known to the authors. Nevertheless, considering that the veri-
fied dataset contains 340 time series with more than one thou-
sand IHs, the impact of previous knowledge of the time se-
ries characteristics could cause minor bias in the efficiencies
calculated.

6 Conclusions

A new homogenisation method, the ACMANT has been de-
veloped. It is applicable for homogenising observational net-
works of monthly temperature series. While the ACMANT is
based on one of the best methods that existed earlier (i.e. on
the PRODIGE), it also includes a new treatment of the sea-
sonal cycle of inhomogeneity-sizes and some other modifica-
tions. The new version of the ACMANT shows a favourably
high efficiency when it is used for homogenising the COST
HOME benchmark dataset. The properties described and
the efficiency results obtained indicate that the ACMANT is
an excellent tool for homogenising networks of temperature
datasets from mid- or high latitudes.
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