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Abstract Evaluation and comparison of efficiencies of
widely used objective homogenisation methods (OHOMs)
are presented relying on some test-datasets and efficiency
measures. Problems related to the choice of efficiency
measure, creation of appropriate test-datasets and use of
OHOM parameterisation are discussed. The detection parts
of the OHOMs are examined only. Power of detection, false
alarm rate, detection skill and skill of linear trend
estimation are calculated and compared for eight OHOMs
and six test-datasets. Each test-dataset comprises 10,000
100 year-long artificially simulated time series. In the
simplest test dataset, each time series contains one
inhomogeneity (IH), while a structure of inhomogeneities
that is similar to that of real central European temperature
time series is included in the most complex simulated
dataset. Distinct attention is given to OHOMs that contain
(1) cutting algorithm, (2) semihierarchic algorithm, (3)
direct detection of multiple IHs, (4) detection of change-
point and trend-line shaped IHs. Results show that
Caussinus–Mestre method and Multiple Analysis of Series
for Homogenization are the most powerful tools in
detecting and correcting IHs in climatic time series.

1 Introduction

Examination of climate change and climate variability
requires climatic time series of high quality. Fortunately, a

large number of long-observed time series are available in
the world, owing to the early realisation of the importance
of collecting observational data. Several climatic time series
from Europe and North America are much longer than a
century. However, the constancy of the measuring techni-
ques, location and physical surrounding is hard to maintain
even for a few decades. Thus, a portion of the changes in
observed time series has no climatic origin, but they
indicate some changes in the direct or indirect conditions
of the observing process (Peterson et al. 1998; Aguilar et al.
2003; Auer et al. 2005; Brunet et al. 2006; etc.). This kind
of change is called an inhomogeneity (IH), and a time series
with IHs is said to be inhomogeneous. The typical form of
IHs is a sudden shift (a so-called change-point) in the
values of time series, because most of non-climatic changes
occur at some distinct time. However, some factors may
cause slow, gradually increasing change in time series
(urban effect, growing trees, etc.), and in such cases, IHs
can be modelled with a non-climatic linear trend in some
section of the time series. Pairs of change-points indicating
changes of the same size but in opposite directions are
referred to as platforms in the study. IHs can be detected by
the comparison of several data series from the same
climatic region, though small IHs are usually indistinguish-
able from random noise. The success of detecting and
correcting IHs depends on numerous factors, with the skill
of the method for resolving the change-points being of
primary importance.

The demand for achieving the best quality of observed
time series has resulted in a great development of
homogenisation methods in the recent decades. Nearly 20
homogenisation methods are widely used in climatology
nowadays, and considering the differences in the details of
practical application the diversity is even greater. Most (but
not all) homogenisation methods cannot detect trend-type
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IHs directly; rather, they often parse the trend-type IH into a
series of step changes. Moreover, it would seem that the
challenge remains to evaluate which method or methods
produce the highest quality of climatic time series.
Obviously, only objective and reproducible homogenisation
methods (OHOMs) can be quantitatively evaluated. Al-
though there have been some comparative examinations
aiming to reveal the capability of detecting IHs by OHOMs
(Buishand 1982; Easterling and Peterson 1995; Lanzante
1996; Ducré-Robitaille et al. 2003; Syrakova 2003; Drogue
et al. 2005; Menne and Williams 2005; DeGaetano 2006;
Domonkos 2006a; Gérard-Marchant et al. 2008; Beaulieu et
al. 2008; Titchner et al. 2009), in these efforts, only a small
selection of the methods were evaluated, and test-datasets
whose statistical properties are usually far from the reality
were used. Simulated datasets for testing OHOMs are
commonly generated from a white noise process to which
some imposed change-points of fixed magnitude are added.
Although these experiments provide useful information
about the general properties of OHOMs, one cannot draw
direct conclusion from them for the performance of
OHOMs in real climatic datasets, since, in the real world,
IH-sizes are not constant. The introduction of variable-size
artificial IHs with peak-frequency around 0 size (Menne
and Williams 2005, 2009) was a substantial step towards
making efficiency tests more appropriate for producing
realistic results. Here, a special way of creating realistic
test-dataset is applied (presented first in Domonkos 2006a):
the statistical characteristics of detected IHs from test
dataset made similar to those from real climatic dataset
through an iterative development of test-datasets.

Given that the statistical characteristics of climatic time
series are diverse and that the practical meaning of
“efficiency” depends on the objectives of the time series
analysis, a thorough evaluation of efficiencies requires the
evaluation of a variety of test-datasets and a number of
different measures of efficiency. This paper presents several
examples of efficiency calculations for cases of high
practical importance but makes no claim to be comprehen-
sive. The principles for selecting the examples were as
follows:

1. The most relevant test-datasets must have similar
statistical properties as real, observed climatic time
series have. The similarity refers also to the frequency
and magnitude–distribution of IHs.

2. Test-datasets of widely different properties are exam-
ined in parallel in order to reveal general relations
among efficiencies for individual OHOMs.

3. Detection parts of OHOMs are examined only; see its
definition in section 2.1.

4. The efficiency measures chosen are relatively simple,
but they have substantial practical importance.

5. OHOMs selected are widely used, and they can be
applied automatically in the examination of relative
time series.

6. Skill in detecting multiple IHs is tested with the parallel
examination of OHOMs with hierarchic, semihierarchic
and direct algorithms.

7. Skill of OHOMs for detecting both shift- and trend-
type IHs is compared with that of OHOMs detecting
shifts only.

8. OHOMs are usually applied with the originally recom-
mended parameterisation.

In the following section, some basic concepts and
definitions are provided. The OHOMs selected for testing,
the test-datasets used and the efficiency measures applied
are also discussed. Results are presented in section 3, which
focus specifically on the efficiency characteristics among
different OHOMs and different test-datasets. A discussion
of the results is offered in section 4, and concluding
comments are provided in section 5.

2 Methods

2.1 Concepts and definitions

Evaluations of efficiency are usually quantified via simu-
lated time series that contain artificial IHs. In reality, the
statistical properties of IHs that occur in real climatic time
series are not known precisely. For this reason, the
frequency of IHs, as well as the distribution of IH
magnitudes may be substantially different in simulated
datasets in comparison with the statistical properties of
relative time series derived from the differences between a
candidate and reference series. Obviously, the higher the
resemblance between the simulated and real statistical
properties, the higher the probability that the estimated
efficiencies based on simulated datasets are valid for real
climatic datasets. Domonkos (2006a) applied a simulation
method that was empirically developed, and the similarity
of such datasets to real observations was tested. This
simulation method is also applied in this study [see item (E)
of section 2.3 and the detailed description of the simulation
in Appendix I].

Efficiency of homogenisation methods is calculated
using six test-datasets in the study. Each dataset comprises
N time series of n year length (Eq. 1).

XP ¼ Xp;1;Xp;2; . . .Xp;n

� �T
; p ¼ 1; 2; . . . N ð1Þ

All the time series contain a standard white noise process
(W) whose standard deviation equals 1, as well as a term
for cumulated effects of IHs (H). So that each element of
time series (the index p will not be in use hereafter) can be
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expressed as a sum of the contemporary noise and the
cumulated effects of IHs (Eq. 2).

xj ¼ wj þ hj; j ¼ 1; 2; . . . n½ � ð2Þ

The statistical properties of IHs in the six datasets are
different. In certain datasets, the structures of inhomogeneities
are very complex (in E and F datasets, see section 2.3.), and
the noise part contains an additional term (W*) beyond white
noise.

Simulated series are always handled as relative time
series in this study, i.e. they are considered to be the
difference between candidate and reference series in an
imaginary dataset. Note that, in raw climatic time series
X contains one more component than how many is
shown in formula (2), namely the time-varying climate-
component. Climate signals may have similar shape as
IHs, and it may complicate the identification of IHs.
Therefore, the application of OHOMs is recommended
primarily for relative time series. Problems related to the
ways of creating relative time series (through building
reference series or with pair-wise comparisons) are beyond
the scope of this study. This paper is restricted to the
examination of the detection part of OHOMs, i.e.
evaluates the skill of statistical methods for identifying
IHs in given time series. Iterative parts of OHOMs are not
considered here. It is important to point out that, while the
results here may differ somewhat from those obtained by
applying a complete homogenisation method, we never-
theless maintain that the skill of the detection component
of OHOMs deserves to be quantified in isolation, and such
an assessment becomes complicated when the other
components of homogenisation procedures are not con-
trolled for in the comparison.

During the simulation, IH magnitudes (m) are expressed
with their ratio to the standard deviation of the white noise
(se). However, during the detection of IHs another unit, the
estimated standard deviation of white noise (se*) is used for
IH magnitudes (m*).

Se» ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
� sT if R > 0

Se» ¼ ST if R e 0
ð3Þ

In formula (3), R denotes the 1 year lag autocorrelation in
relative time series, and sT refers to the empirical standard
deviation of the time series. The use of unit se* is justified
by the fact that during the detection process se is known
only for simulated time series while, for relative time series
derived from real observations, this characteristic is
unknown. In contrast, se* can easily be calculated for any
time series. se* is usually higher than se, but never higher
than sT. Thus, se* is a better estimation of se than sT.

2.2 OHOMs examined

OHOMs usually detect one change-point only or a structure
of trend plus one change-point in a particular step of the
detection procedure, and multiple IHs of time series are
searched by hierarchic or semihierarchic organisation of
individual steps. The only exceptions are the Caussinus–
Mestre method (C-M, Caussinus and Mestre 2004) and the
Multiple Analysis of Series for Homogenisation (MASH,
Szentimrey 1999) whose algorithms are capable of detect-
ing multiple structures of IHs directly. Thus, considering
the theoretical bases, the latter two OHOMs promise the
homogenisation results of the highest quality.

Efficiencies of detection parts of seven OHOMs are
examined in the study. They represent different classes of
detection algorithms of great theoretical importance by
methods widely used in climate studies. The seven methods
are the: Multiple Linear Regression (MLR, Vincent 1998),
Penalised Maximal t test (PMT, Wang et al. 2007), Standard
Normal Homogeneity Test for shifts only (SNH, Alexanders-
son 1986), Standard Normal Homogeneity Test for shifts and
trends (SNHT, Alexandersson and Moberg 1997), t test (tts,
Ducré-Robitaille et al. 2003), C-M and MASH. Two versions
of SNH are used: SNH1 includes the common cutting
algorithm, while SNH2 is supplied with the semihierarchic
algorithm recommended by Moberg and Alexandersson
(1997). Thus, the final number of examined OHOMs is
eight. The use of two different versions of the SNH allows
the comparison of different algorithms for detecting multiple
IHs. The abbreviation SAMA is used hereafter for the
semihierarchic algorithm by Moberg and Alexandersson.

The simplest OHOM examined here is the sequential t
test. It assesses the homogeneity of distinct sections of time
series not considering the properties of time series beyond
the selected section. All the other OHOMs examine whole
time series or sections that are delimited by either an IH
detected in an earlier step or some end of the time series.

MLR, PMT and SNH1 operate with cutting algorithm. In
these methods, when an IH is detected, the time series is
divided to two parts, and the sections derived in this way are
examined further as long as the length of sections is sufficient
for further examination. This threshold is 10 years in this study,
in accordance with the usual recommendation (Easterling and
Peterson 1995; Lanzante 1996, etc.). A further restriction here
is that the minimum distance between two IHs or between an
IH and one end of the time series is 5 years.

In SNH2 and SNHT, the SAMA is applied. In this
method, after identifying the timings of potential IHs
detected with the cutting algorithm in the first phase, each
potential IH is retested in the second phase using a section
that contains exactly one potential IH and that is delimited
by either some IH, potential IH or by one end of the time
series. This double-phase procedure aims to eliminate
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potential interferences when more than one IH can be
present in examined sections (in the first phase).

C-M and MASH are capable of detecting multiple IHs in
a direct way. C-M fits an optimised step function to time
series (Hawkins 1972), and the number of steps is set by the
Caussinus–Lyazrhi criterion (Caussinus and Lyazrhi 1997).
In MASH, each possible combination of IHs is considered
and subjected to hypothesis test (Szentimrey 1999).

MLR and SNHT detect both change-points and trend-
type IHs, while the other OHOMs can only approximate the
treatment of trend-type IHs with a series of small shifts
(series of change-points).

Considering the parameterisation for selecting significant
IHs, the original parameters are used in C-M and PMT; it is
set according to the original recommendations aiming 0.05
rate first type error (FTE) in pure white noise processes when
the null-hypothesis is that the time series is homogeneous in
MASH, SNH2 and SNHT, the same for SNH2 as for SNH1,
while it was calculated by the author for MLR and tts,
approaching 0.05 rate FTE in pure white noise processes. In
SNHT, the detected IHs are always trends when the estimated
duration of change is at least 5 years and always change-points
in the reverse case. In MLR, only the 1 year lag autocorre-
lations are controlled in the present version. This parameter-
isation for MLR appears to generally provide higher
efficiencies than the original formulation (not shown).

A uniform pre-filtering of outliers is applied before the
use of any OHOM. Anomalies from the average of the time
series are considered to be outliers if their absolute values
are higher than 4 standard deviation of the time series
elements. These values are replaced with 0 anomalies.

2.3 Test-datasets

Six kinds of test-datasets (A,B,…F) are used in this paper.
Each dataset comprises 10,000 time series. All the time
series are of 100 years length (n=100).

The inhomogeneity-properties of the six datasets are as
follows.

A. One IH is included in each time series. Its type is change-
point, the timing (j) equals to 40 or 60, and m equals to
3. In this simple case, it is easy to explicitly write down
the values taken by h as a function of time (Eq. 4).

hi ¼ 0; if i � j; and hi ¼ 3; if i > j; 1 � i < n;

j ¼ 40 or j ¼ 60

ð4Þ

B. Five change-points are included, one with j=40 and m=
3, while the others are with random timings but of a
fixed magnitude, m=1.5. The minimum distance be-
tween adjacent IHs and from the endpoints of the series
was set to be 4 years.

C. The mean frequency occurrence is one IH per 20 years,
but IH-frequencies in individual time series may
deviate from the average. All the IHs are change-
points; their signs (positive or negative), timings and
magnitudes are random. Magnitudes (m) are between 0
and 4; they are exponentially distributed for m>1, and
equally distributed for m<1 (Eq. 5).

m ¼ e2:39� q�0:42ð Þif q � 0:42
m ¼ 1

0:42 � q if q < 0:42
ð5Þ

q is a random variable with equal distribution
between 0 and 1.

D. It is similar to item 3; only, some parameters differ. The
mean frequency occurrence is one IH per decade. All the
IHs are change-points; their signs (positive or negative),
timings and magnitudes are random. Magnitudes (m) are
between 0 and 6; they are exponentially distributed for
m>1, and equally distributed for m<1 (Eq. 6).

m ¼ e2:8� q�0:36ð Þ if q � 0:36
m ¼ 1

0:36 � q if q < 0:36
ð6Þ

E. The standard dataset. A rather complex structure of
randomly distributed IHs of different types (change-
points, platforms, trends) and magnitudes. When this
dataset was created, the goal was to simulate the
properties of relative time series from an observed
Hungarian temperature dataset (Domonkos 2006b) as
closely as possible, which is difficult because the
configuration of IHs is essentially unknown. Ulti-
mately, an empirical approach obtained following
numerous iterations focused on minimising the differ-
ences between the simulations and the observed data.

Appendix I provides a description of the simulation
method in detail. In brief, the simulation yields a set of
synthetic relative time series. Each series is categorised
by a lag-1 autocorrelation greater than 0.4 (which is
itself an indicator of non-homogeneous character for
relative time series; see, e.g. Sneyers 1997). The
simulation method was developed empirically, without
setting any preconception of IH-structures. However,
beyond the empirical justification, the basic IH proper-
ties of the standard dataset can be reasoned as follows:

& Small IHs are much more frequent than large ones
since potentially large deviations are more obvious
and can be corrected by observers in routine-
controls or through an earlier implemented homog-
enisation. Also, the causes of potentially large
deviations could easily be identified and eliminated.

& Platform-like IHs are very frequent. The cause of
these types of IHs is twofold: First, the causes of
deviations are often eliminated with some delay
such that the excursion to a new mean level is
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temporary. Second, two adjacent shifts relatively
rarely have the same sign. This is because accumu-
lated deviations of large magnitudes may be noticed
and corrected with higher probability than devia-
tions fluctuating near zero.

& Short-term deviations (i.e. IHs of small duration)
are more frequent than long-lasting IHs. From the
empirical results, it seems that most of the IHs of
considerable size are recognised and eliminated
within few years of their occurrence. However, it
cannot be ruled out that a certain percentage of IH-
like signatures of very short duration may in fact
have true climatic origins through the natural
fluctuations of spatial climatic gradients, which
may contribute to the seemingly high rate of short-
term IHs. We have no concrete information regard-
ing the relative distribution of macroclimatic and
truly local small IHs, but an arbitrarily determined
percentage of small IHs is considered to be of true
climatic origin (see Appendix I).

Figure 1 illustrates the similarity between the IH
properties from simulated and real climatic datasets.
To generate this figure, 204 statistical properties
were calculated both for the real and the artificial
datasets that are relevant to the 15 OHOMs, each of
which has four different parameterisations. The
frequency of detected shifts, first and second
moments of magnitude distributions, as well as
properties of detected trends (when OHOM calcu-
lates also trends) were considered (Domonkos
2006a). In Fig. 1, the frequency distribution of
differences between the real and simulated charac-
teristics is presented. The resemblance is evident in
that there are very few cases with differences over
10%. We note that an examination of a Moravian
temperature dataset resulted in very similar statistical
properties of detected IHs (Domonkos and Štěpánek

2009) despite large differences in the spatial density
and correlation between station series.

F. A quasi-standard dataset with reduced frequency of large
IHs. The simulation method is almost the same as for the
standard dataset, but the frequency of persistent large IHs
is much lower in this dataset (see Appendix II). The
examination of reduced frequency of persistent large IHs
has great practical importance, because the quality-
controller may not be aware of all earlier corrections
made in time series, so homogenised, partly corrected and
seriously erroneous time series cannot always be separat-
ed well. Thus, during the quality controls, one can easily
meet with time series whose statistical characteristics are
very similar to typical unchecked series, but the frequency
of persistent large IHs is markedly reduced.

Figure 2 presents the magnitude distributions for change-
point type IHs in the C–F datasets. Magnitudes are
expressed in m*, while for frequency values, an arbitrary
unit is used. The difference between the frequency of large
IHs and that of small IHs is very high, therefore the y-scale
is logarithmic. It can be seen that the amount of small IHs is
larger in the standard dataset than in the datasets with
exponential distribution of shift-magnitudes. It must be
noted that the amount of very small IHs (m*<<1) cannot be
determined with certainty because they have little impact on
the detection results. However, for the very same reason,
their importance is also limited. On the other hand, above
m*≈0.5, the impact of small IHs on the efficiency of
homogenisation increases, and experimental homogeniza-
tion results do not reproduce the statistical characteristics of
observed datasets without the inclusion of a number of
small IHs. This observation indicates that the inclusion of
small IHs in test-datasets is necessary to obtain reliable
results in testing the efficiency of OHOMs.

Datasets C and D contain more moderately large IHs (2
<m*<3) than the standard dataset does, but considering
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Fig. 1 Frequency distribution of differences between the same type
statistical characteristics of detected inhomogeneities for observed
temperature series in Hungary and for the standard test-dataset. Filled
columns show results of weighting with sample size
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very large IHs, the relation turns back again. Differences for
datasets E and F are small below m*=2.5, but more striking
at higher magnitudes.

2.4 Measures of efficiency

Four measures are considered: (a) power of detection,
(b) false alarm rate, (c) detection skill and (d) skill of
linear trend estimation. Measures (a) to (c) test the skill
of the identification of change-points, while (d) eval-
uates the reliability of linear trends in homogenised time
series.

Let the sum of correct detections, that of false detections
and the total number of change-points, be denoted by SR, SF
and S, respectively. Measures (a) to (c) can be expressed
with the combination of these simple characteristics.
Although the concepts of correct and false detection are
clear in case of one or a few of fairly large IHs, separating
their occurrences is not as easy in complex IH-structures,
such as those in datasets E and F.

A change-point exists in time series X at year
j 3 � j � n� 3ð Þ, if

1

k

Xj

i¼j�kþ1

xi �
Xjþk
i¼jþ1

xi

�����
����� � 2; for each k of k ¼ 1; 2; 3f g ð7Þ

Formula 7 shows that change-points with magnitude (m*)
at least 2.0 are considered. A shift of this magnitude must
be detectable comparing each symmetric half-window
pairs, up to window-width of 6 years. The mean frequen-
cies of such change-points in datasets A–F are 1, 1, 0.66,
1.94, 0.64 and 0.37 per time series, respectively.

Correct detection The detection result at year j is a change-
point with m*≥1.5, and a change-point with a shift of the
same sign as the detected IH has, really exists in section
j� 1; jþ 1½ �.

False detection The detection result at year j is a change-
point with m*≥1.5, but no change with the same direction
occurs at all, taking into account any of the possible
comparisons of section-means for symmetric half-windows
around j up to window-width of 6 years. There is no
minimum threshold here for the size of factual changes,
only their signs are considered.

1. Power of detection (Pw):

Pw ¼ SR
S

ð8Þ

2. False alarm rate (Fa):

Fa ¼ SF
SR þ SF

ð9Þ

3. Detection skill (ED):

ED ¼ SR � SF
S

ð10Þ

ED presents a combined measure of the power and the rate
of false detections. The highest possible value of ED is 1,
and ED=1 means perfect identification of change-points.
When half of the detected change-points are false, ED=0.
Note that in datasets including very few change-points (S is
small), ED can easily be negative.

4. Skill of linear trend estimation (ET): The accuracy of
slopes of linear trends for the whole (100 years long)
time series and for the last 50 years of series is
evaluated. Let the mean bias of trend estimations be
denoted by f for homogenised time series and f0 for
time series without homogenisation.

ET ¼ f0 � f

f0
ð11Þ

ET indicates the reliability of trend estimations in homoge-
nised time series. The maximum value of ET is 1, and ET=
1, only if all the trend estimations are perfect. ET=0 means
that neither any improvement, nor an increase of errors is
typical for homogenised time series. If a homogenisation
results in larger biases of trends than the biases for time
series without homogenisation, ET is negative.

3 Results

Figure 3 presents the ED and ET values of the investigated
OHOMs for datasets A–F. When only one change-point is
included (Fig. 3a), most of the OHOMs perform well and
the efficiencies are near or above 90%, except for tts. When
the same size change-point (m=3) is accompanied by four
small shifts (Fig. 3b), the efficiencies are substantially lower.
Nevertheless, although the detection skill has been dropped
dramatically to 40–70%, the skill of trend estimation remained
relatively high, between 80–90%, except for tts. While for
“A” type series, SNH1 and MASH have the highest ED and
ET values, respectively; for “B” series, the PMT and C-M are
the best. However, the highest efficiency values are closely
followed by the efficiencies of several other OHOMs in both
of the experiments “A” and “B”, thus positional differences
do not indicate significantly different performances.

Results for dataset C (Fig. 3c) are very similar to those
of dataset B. In this experiment, SNH2 has the highest ED,
and C-M has the highest ET value.

Figure 3d–f show a substantially different distribution of
ED values than the previous ones. While in experiments A,
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B and C, PMT, SNH1 and SNH2 perform similarly or even
better than C-M and MASH; in experiments D, E and F, C-
M and MASH have considerably higher detection skill than
any other OHOMs do. No such difference is observed
between the two groups of experiments when testing the
skill of trend estimation. What is more, the distribution of
ET values has several common features in all but the “A”
experiments: (a) Only small differences between the skills
of C-M, MASH, PMT, SNH1 and SNH2 can be observed,
(b) C-M always shows the highest skill, (c) PMT or SNH1
has the second highest ET, (d) Skills of SNHT and MLR are
always slightly lower than the five best OHOMs from the
examined eight and (e) skill of tts is markedly smaller than
that of the other OHOMs.

Results show also that (1) MASH has slightly lower skill
than C-M does, with few exceptions only. (2) In spite of the

fact that MLR and SNHT are capable of detecting both
abrupt shifts and gradual linear changes, the skill of these
OHOMs is not higher than that of the other OHOMs, even
in experiments including linear changes with 25% rate of
persistent IHs (datasets E and F). A possible reason of this
result is that these OHOMs often fail to identify the kind of
the IH. For example, they detect a linear change instead of
two abrupt shifts of the same direction. However, it is hard
to explain why the skills of trend estimation for SNHT and
MLR are lower than that for SNH1 and SNH2. (3) tts has
generally much lower skill than the other OHOMs
examined do, especially in trend estimation. For standard
and quasi-standard datasets, this efficiency measure shows
negative skill. The explanation is that tts examines sections
of time series and detects change-points without coherence
between the examinations and time series properties for
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Fig. 3 a–f Detection skill (ED, empty columns) and skill of linear trend estimation (ET, striped) with different OHOMs in datasets (a)…(f),
respectively
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individual sections. (4) Application of SAMA has no
considerable positive effect on the skills relative to the
common cutting algorithm. Although SNH2 always has
slightly higher detection skill than SNH1 does, the relation
for ET values is just the opposite.

Powers and false alarm rates are also examined. In Fig. 4,
the results are grouped according to the test-datasets used. It
can be seen that differences between the efficiency character-
istics are often higher according to the time series properties
than among the OHOMs. In Fig. 4, the best results (high
power and low false alarm rate) can be found in the upper
left corner, while moving right and down in the figure, the
skill is decreasing. It is not a surprise that the highest skills
are usually achieved with dataset “A” in which one change-
point per time series is included only. Skills are usually high
also for dataset D in which large IHs occur at high
frequency. Results for datasets B and C have an interesting
feature, namely OHOMs with the lowest false alarm rate
have rather low power, while OHOMs with the highest
power have considerably high false alarm rate. For the
standard and quasi-standard datasets, 2-2 results have
distinguishably higher power than the other OHOMs do. In
accordance with the results of Fig. 3, these OHOMs are the
C-M and MASH. There is a big difference between the
results for dataset F and the other results that false alarm rate
is markedly higher for this dataset with all the OHOMs
examined. The likely explanation is that the low rate of
large, persistent IHs severely reduces the rate of correct
detection, and supposing the unchanged amount of false
detection, it results in a great increase in the false alarm rate.

Figure 5 presents again the Pw-Fa characteristics, but in
this figure the results are separated according to the test-
dataset used, and the characteristics with different OHOMs
are for comparison. This figure confirms that, while PMT
and SNH are the best OHOMs for datasets A, B and C, C-

M and MASH have the highest skill for the other three
datasets. Seeing the details, we can find that, using datasets
A–C, Fa is considerably lower and Pw almost the same for
PMT and SNH than for C-M and MASH, while, for D–F,
the power is much higher with C-M and MASH than with
any other method, and differences of Fa do not compensate
for the differences of Pw.

In spite of the big differences in the absolute values
according to the test-dataset used, there are several common
features in the relative position of Pw-Fa value-pairs: (1) The
differences between the characteristics of SNH1 and SNH2
show the impact of the SAMA. The results with SNH2 are
closer to the upper left corner of the figure indeed than that
of SNH1, but the differences are disappointing small. (2)
Efficiency characteristics of PMT hardly differ from those of
SNH1 and SNH2. (3) MLR can be characterised by
moderately high power and rather high false alarm rate. (4)
Results for SNHT and tts show favourably low false alarm
rate, but insufficiently low power. (5) Comparing the results
of C-M and MASH, C-M consistently has higher power than
MASH, but the false alarm rates are also always higher with
C-M. As the differences between the Fa values are usually
small, C-M has the higher detection skill. However, because
of the mixture of favourable and unfavourable features and
the relatively small absolute differences, the rank order
between C-M and MASH may depend on the weighting of
the individual efficiency characteristics.

The last figure of this section (Fig. 6) shows the rates of
first type error in pure white noise process for the OHOMs
examined. FTE values scattered in a rather wide range, and
they often differ from the OHOM-constructors’ intention, e.
g. in case of MASH, the applied parameterisation is the one
which was developed for approaching 5% FTE, but the
results presented indicate a higher than 10% first type error.
On the other hand, there is no substantial direct connection
between the FTE in white noise and Fa in inhomogeneous
series. For instance, MASH and PMT have higher FTE than
C-M and SNH1, respectively. For dataset A (with only one
IH), MASH and PMT display higher false alarm rates
indeed than C-M and SNH1 do, but, for all the other test-
datasets, C-M and SNH1 produce higher Fa values than
MASH and PMT, respectively.

4 Discussion

Although the differences between efficiencies for individual
OHOMs often seem to be small in Figs. 3, 4 and 5, the
examination presented yielded results of theoretical impor-
tance. First of all, the sharp drop of detection skill changing
the test-dataset from A to B. Although there are five
change-points per time series in dataset B, the detection
skill for the one with the highest magnitude was tested only,
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Fig. 4 Power of detection (Pw) and false alarm rate (Fa) value-pairs.
Dataset A: empty circle, B: multiplication sign, C: plus sign. D: empty
triangle, E: filled square, F: empty square
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since IHs of m*<2 are not considered in the evaluation.
Thus, in both A and B datasets, the detection skill for one
IH with m=3 was tested, and the four small IHs (with m=
1.5) in dataset B are considered as part of the noise. (There
is an exception from the latter rule, when a change-point
was detected within ±2 years time shift relative to the
factual timing of a small IH, the detection was neither
considered to be right nor to be false; it follows from the
definitions given in section 2). Consequently, the differ-
ences between the detection skills for A and B datasets
indicate the effect of different kind noises on detection skill.
The results show that small IHs may have a robust impact
on the detection skill of large IHs. Considering this finding
and the fact that observed time series generally contain
large number of small IHs (see section 2.3), it can be
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Fig. 6 Rates of first type error (FTE) in pure white noise

a)

0

20

40

60

80

100

0 10 20 30 40 50

Fa [%]

Pw [%]

b)

0

20

40

60

80

100

0 10 20 30 40 50

Fa [%]

Pw [%]

c)

0

20

40

60

80

100

0 10 20 30 40 50

Fa [%]

Pw [%]

d)

0

20

40

60

80

100

0 10 20 30 40 50

Fa [%]

Pw [%]

e)

0

20

40

60

80

100

0 10 20 30 40 50

Fa [%]

Pw [%]

f)

0

20

40

60

80

100

0 10 20 30 40 50

Fa [%]

Pw [%]

Fig. 5 a–f. Pw-Fa value-pairs for individual OHOMs in datasets (a) to (f), respectively. C-M: filled circle, MASH: filled triangle, MLR: open
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concluded that test-datasets simulating “real world” should
contain multiple IHs with a wide range of magnitudes.

High false alarm rates for dataset F (Fig. 5f) require
some explanation. The amount of change-points with
considerable magnitude (m*>2) in dataset F is approxi-
mately the half of that in dataset E (Fig. 2). Therefore, the
large difference between the Fa values for datasets E and F
may be surprising. Here, another figure is presented with
the magnitude distribution of persistent IHs. In the
construction of Fig. 7, only change-points with at least
10 years persistence in both sides of the shift were
considered. It can be seen that the amount of persistent
IHs with m*>2 is much lower in dataset F than in dataset
E. Interestingly, the change between datasets E and F
involves only a few percent of all IHs in the datasets, but
the efficiency characteristics belonging to them are very
different, because of the dominant impact of large persistent
IHs on the detection skill. On the other hand, positive skills
for dataset F prove that the use of OHOMs generally results
in quality improvement, even if the rate of persistent IHs of
considerable size is dramatically reduced.

Relying on the theoretical bases, one may suppose four
general relations among the efficiencies: (1) OHOMs that
examine the whole series as one unit perform better than the
ones that examine sections of series with arbitrary borders
(t test in this study); (2) OHOMs capable of detecting both
shifts and trends are better than OHOMs detecting shifts
only; (3) OHOMs with semihierarchic algorithm perform
better than OHOMs with the common cutting algorithm
(Gérard-Marchant et al. 2008; Menne and Williams 2009);
(4) Direct detection of multiple IHs is more effective than
both SAMA and the common cutting algorithm. However,
the real world is different, and the results justify only the first
and fourth suppositions. Moreover, there are exceptions even
for “rule 4”, i.e. in certain cases the performance of direct
algorithms is poorer than that of some other methods. Note
that other semihierarchic algorithms than SAMA are also
known (Lanzante 1996; Gérard-Marchant et al. 2008), but it

seems to be unlikely that markedly different efficiencies
could be achieved with them than by applying SAMA. The
limited skill of OHOMs with cutting algorithm or SAMA for
datasets D, E and F likely arises from the fact that the
application of very simple models in individual steps is far
not the most appropriate way of detection when large
number of IHs are present in time series.

I would like to stress that for time series with large number
of IHs, which is typical for observed time series, the direct
methods – C-M and MASH – provide the highest efficiency
because of their markedly higher power relative to the other
OHOMs. In the comparison of efficiencies between C-M and
MASH, the results are mixed. Examining the characteristics of
ED, ET and Pw, it can be found that C-M performs better than
MASH with only few exceptions. In contrast, the false alarm
rate is always higher with C-M than with MASH. Pw-Fa
characteristics in Mestre et al. (2008) are partly similar to the
results shown in Fig. 5d. That study also found a higher false
alarm rate with C-M than with MASH, but the difference
there is very little. The differences in Fa values for C-M and
MASH are generally not large, that is why detection skill is
higher with C-M than with MASH. The use of a mixed
characteristic “general efficiency” in Domonkos (2006a) also
resulted in a higher efficiency for C-M than for MASH.
However, it is clear that the rank order between C-M and
MASH depends on the weighting of the individual efficiency
characteristics and perhaps on the details of the definitions of
correct detection and false detection. Especially when false
alarm rate is given an enhanced importance, MASH may
easily be more efficient than C-M.

It is hard to find appropriate weightings for efficiency
characteristics because the appropriateness depends on the
purpose of the homogenisation and, on the other, unexam-
ined parts of the OHOMs. We reject the theory that making
an additional error in an observed time series by a false
detection is generally more harmful than keeping an
existing error unchanged. So-called raw time series have
usually been checked several times by several investigators
before homogenisation, and some suspicious values might
had been altered by the time the “raw” time series is presented
to the analysers for the first time. Another argument is that the
origination of the errors has no impact on the climate
variability investigations, while the frequency, magnitude
and the possible spatial coherence of the errors have real
importance. On the other hand, if iteration is applied during
the homogenisation of a dataset, both of false detections and
lack of correct detections may have negative feed-back on the
results. Therefore, further examinations are needed to find
realistic weightings for the efficiency characteristics.

The results show that there is no direct connection
between the rate of first type error in white noise process
and the efficiency characteristics examined. OHOMs with
high FTE may have low false alarm rate, and vice versa.
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Fig. 7 Distribution of magnitudes (m*) of persistent IHs for some
selected test-datasets
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Therefore, although a low FTE is a traditional requirement
from homogenisation methods, it is not necessary at all, if
one applies an auxiliary method to select inhomogeneous
time series from datasets for investigation and starts to work
with the chosen OHOM afterwards. A consequence of this
freedom is that the optimal parameterisation of OHOMs may
be far outside from the range which is bounded by the
application of some low FTE target-values. Optimal param-
eterisations can be determined empirically only (Domonkos
2006a). A serious problem of the optimisation is that the
optimum depends on several factors, i.e. depends on the
purpose of the homogenisation, on the characteristics of the
dataset for examination and on the operation of other
components of the OHOMs than the detection part. The
problem is the same when the Caussinus–Lyazrhi criterion is
compared with other criterions in the C-M method to find
the optimal number of change-points.

5 Conclusions

A challenging task is to evaluate the efficiency of OHOMs.
Even the concept of “efficient” may depend on the goal of
the user. A high skill in finding the timings and magnitudes
of IHs with substantial sizes does not guarantee similarly
high reliability in reproducing climatic trends and variabil-
ity, as it was illustrated by several examples of the paper.
Consequently, a profound evaluation of efficiency must be
based on sub-evaluations relying on different aspects of the
homogenisation task. Efficiency evaluations shown in this
paper are examples only; yet, some general conclusions can
be drawn relying on them.

& The use of OHOMs is generally beneficial for the
quality of time series. When OHOMs are used for time
series with at least one change-point of substantial size,
the residual error is mostly lower than 50% of the error
in time series without homogenisation.

& Small IHs have robust impact on the detection results,
even if the skill of detecting large IHs is examined only.

& Often, larger differences appear between efficiencies for
different kind datasets than for different OHOMs. The
use of different efficiency evaluations may result in
different rank-orders of the performances of OHOMs.

& Several relations among efficiency characteristics for
different OHOMs seem to be stable; they depend little
on the test data set and efficiency measure applied.

& Comparing the results of different detecting methods with
various approaches towards detecting multiple IHs, it
seems that direct algorithms are much more beneficial in
identifying complex IH-structures than the cutting algo-
rithm or the SAMA. Although the differences are small in
the skill of trend estimation, the differences in the power

are striking, and the impact of these differences seems to
be robust on the detection skill and other efficiency
measures. Using the test-dataset of fairly high similarity to
relative time series derived from observational data in
Central Europe, the Caussinus–Mestre method and
MASH show the highest efficiency. Other tests can also
be useful in special tasks, e.g. in checking the significance
of a presumed change-point relying on metadata.

This study aimed only at the efficiency of the detection
parts of OHOMs and does not address differences related to
time series comparison methods, iterative improvements
through repeated application of OHOMs, as well as from
possible supplements with the use of metadata information
or other subjective steps. The results show that there are
still many tasks that the climatologists have to accomplish
in order to obtain reliable knowledge about the efficiency of
homogenisation methods.
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Appendix I

Simulation of the standard test-dataset

1. 196-year-long series are generated, and always, the
slices of years 48–147 are the target series.

2. IHs and noises are introduced in each year (but their
values can be 0, naturally).

3. Types of the terms for introduction to time series: (a)
long-term IH (y), (b) short-term IH (z) and (c) white
noise (w). A certain part of y- and z-type terms is
handled as noise (cf. step 10).

4. Forms of the IHs: (a) sudden shift, (b) gradual change,
(c) platform-like change, (d) bias for one specific year.
Form (d) is a specific case of class (c).

5. Introduction of long-term IHs.

5.1: Size and direction of the IH
This term includes an IH whose magnitude can

be large, with the probability given inK1, as well as
a small IH with the probability given in K2:

Δy0i ¼ K1 q1ð Þ � sign 0:5� q2ð Þ � 8þ 4pð Þ
� q6þ4p

3 Þ þ K2 q4ð Þ � G1; ðA1Þ
where K1(a)=1, if a<0.012, and K1(a)=0 other-
wise; K2(a)=1, if a<0.07, and K2(a)=0 otherwise;
q (with all indices): variable of the uniform
distribution over the period [0,1) p has the same
distribution as q does, but p is constant for a given
time series. Δ denotes that (A1) is not for
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substituting, but for modifying the earlier value of
yi. Apostrophe above y shows that values gained
by (A1) are modified in certain cases (see below)
before the introduction of Δyi . If Δyi′=0 the steps
5.2 and 5.3 are omitted.

5.2: Form of the IH
The form of Δyi’ is (A) sudden shift, (B)

gradual change or (C) platform-like change, with
0.4, 0.25 and 0.35 probability, respectively.

For (A)- and (B)-form IHs a negative autocor-
relation is present:

Δyi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
�Δy 0i þ r � F; ðA2Þ

where F ¼ 0 for the first (A)- or (B)-form IH of
the series, and F=Δyk otherwise, k indicates the
year of the previous introduction of (A)- or (B)-
form IH, and r=–0.5.

For (C)-form IHs:

Δyi ¼ Δy 0i ðA3Þ
5.3: Calculation of the yi components of the series

(A)-form IHs:

yj ¼ yj;�1 þΔyi for each j 2 i; n½ �; ðA4Þ
where yj,-1 denotes the value of term yj before the
ongoing modification.

For (B)- and (C)-form IHs, duration-values
must be paired at first. For B-form, IHs the
duration D1 is:

D1 ¼ 5þ 2 � Int 48 � q1:55

� � ðA5Þ

(“Int” denotes integer part), and the appear-
ance of the IH is:

yj ¼ yj;�1 þ j� iþ 0:5D1ð ÞΔyi
D1

for each j 2 i� 0:5D1; iþ 0:5D1 � 1½ �;

ðA6Þ

while for (C)-form IHs:

D2 ¼ Int 30 � q1:56

� �
; ðA7Þ

yj ¼ yj;�1 þΔyi for each j 2 i; iþ D2½ �: ðA8Þ
6. Introduction of short-term IHs

The size and the direction of this term is calculated
by the same functions as those of long-term IHs (A1),
but the frequencies (determined by the K-functions)
are different:

Δz0i ¼ K3 q7ð Þ � sign 0:5� q8ð Þ � 8þ 4pð Þ � q6þ4p
9 Þ þ K4 q10ð Þ � G2;

ðA9Þ

where K3(a)=1, if a < 0:04� 0:03p, and K3(a)=0
otherwise; K4(a)=1, if a < 0:5� 0:4p, and K4(a)=0
otherwise. The ongoing modification has a negative
autocorrelation (r=–0.5) with the z value accumulated
prior.

Δzi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
�Δz0i þ r � zi;�1 ðA10Þ

The form of this term is always platform-like
change. Its duration is given by D3.

D3 ¼ Int
12 � q311

1þ 0:3 Δzij j
� 	

; ðA11Þ

zj ¼ zj;�1 þΔzi for each j 2 i; iþ D3½ �: ðA12Þ
7. Introduction of white noise term:

wi ¼ G3 ðA13Þ
8.

X ¼ Yþ ZþW ðA14Þ
9. Serial correlation of X is calculated, and the series is

added to the test-dataset if the value is not lower than
0.4, while it is discarded otherwise.

10. A part of long-term IHs (Y) and short-term IHs (Z) is
not considered to be errors of the candidate series, so it
is handled as noise. The rate of this type noise increases
with decreasing IH magnitudes, and it is higher for
platform-like changes than for change-points and
gradual changes. As a consequence of these noise
terms, the model series of the standard dataset is

X ¼ HþWþW» ðA15Þ
where

W» ¼ Yw þ Zw ðA16Þ

H ¼ Y� Yw þ Z� Zw ðA17Þ

The index w denotes noise part. The probability (P) of
that a given term is considered to be noise, is determined
according to the rules below:

For platform-like IHs, the probability P1 is given by:

P1 ¼ max 0:6� 0:4 � Δyij j; 0ð Þ; ðA18Þ

where Δyi is determined by Formulae (A1) and (A3). (A18)
is applied also for Δz-type IHs.
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For change-points and gradual changes

P2 ¼ max 0:3� 0:4 � Δyij j; 0ð Þ: ðA19Þ
where Δyi is determined by Formulae (A1) and (A2).

Appendix II

Simulation of the quasi-standard test-dataset
The procedure is the same as for the standard dataset,

except that K1 is always equal to 0 in formula (A1). As a
result of this change, the frequency of persistent large IHs is
much lower in this dataset than in the standard dataset.
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