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Abstract. In the recent decades various homogenisation methods have been developed, but the real effects of
their application on time series are still not known sufficiently. The ongoing COST action HOME (COST
ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher
confidence than earlier. As a part of the COST activity, a benchmark dataset was built whose characteristics
approach well the characteristics of real networks of observed time series. This dataset offers much better
opportunity than ever before to test the wide variety of homogenisation methods, and analyse the real effects
of selected theoretical recommendations.

Empirical results show that real observed time series usually include several inhomogeneities of different sizes.
Small inhomogeneities often have similar statistical characteristics than natural changes caused by climatic
variability, thus the pure application of the classic theory that change-points of observed time series can be
found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal
changes and long-term fluctuations of time series are usually much closer to the reality than in raw time
series. Some problems around detecting multiple structures of inhomogeneities, as well as that of time series
comparisons within homogenisation procedures are discussed briefly in the study.

1 Introduction

To obtain a precise and reliable picture about the climatic
variability of the period with instrumental observation meth-
ods, it is necessary to eliminate the influence of technical
changes (hereafter: inhomogeneity, IH) in the observation
systems. Therefore, together with the collection and archiv-
ing the observational data, a special branch of quality con-
trol developed for managing this kind of problem, i.e. the
so-called time series homogenisation. During this develop-
ment, a large number of statistical methods were introduced.
Recently, enhanced efforts have been devoted to compare and
evaluate the efficiency of different methods and this is not an
easy task, because in real observed datasets the true statisti-
cal properties of IHs are never known exactly. Among other
efforts the COST HOME has brought dynamism to these ex-
aminations. The present epoch of research on homogenisa-
tion methods can be characterized with the following new
lines:
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(i) Homogenisation methods are tested in simulated
databases whose properties approach well the real proper-
ties of networks of observed climatic time series; (ii) The
performance of homogenisation methods is evaluated by cal-
culating RMSE between corrected time series and the corre-
sponding homogeneous time series, as well as calculating the
mean bias of linear trends between corrected time series and
perfect time series.

In this study some theoretical problems related to the ap-
plication of homogenisation methods are briefly described,
and an example is shown for demonstrating the superior per-
formance of the detection methods whose algorithm includes
a direct identification of multiple structures of change-points.

2 Methods and definitions

Two, frequently appearing forms of IHs are defined here.
Note that other forms may also occur, but they are not dis-
cussed in this study.

– Change-point: A sudden shift in the mean of the obser-
vational values. It is the most frequent form of IH, since
most technical changes happen abruptly.
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– Platform-like inhomogeneity[Pfm]: Pair of change-
points of the same size, but of the opposite direction.

Concepts related to efficiency-evaluation:

– Correct detection: When an IH is detected in yearj, and
an IH really exists in section [j−2, j+2].

– False detection: In the detection result an IH is included
in year j, and no IH exists in section [j − 2, j + 2].
Note: If two IHs are detected around a really existing
IH (e.g. an IH really exists in yearj, but the detection
results indicate two IHs, one inj−2 and another one in
j+2) one of them is sorted into the correct detections,
but the other one into the false detections.

The total number of correct detections, that of false de-
tections and that of true IHs are denoted bySR, SF and
S, respectively.

– Power of detection(Pw):

Pw=
SR

S
(1)

In Eq. (1),S stands for the total number of true IHs.

– Detection skill(D):

D=
SR−SF

S
(2)

– Efficiency of RMSE-reduction(E): In this study the ef-
ficiency is characterised by the improvement of root
mean squared error (RMSE) due to homogenisation.

E=
RMSEraw−RMSEhomogenised

RMSEraw
(3)

3 Purpose of homogenisation

Until the recent years it was common that the efficiency of
homogenisation methods was evaluated by some set of sim-
ulated time series including a white noise process plus one
or a few change-points whose magnitudes are significantly
higher than the standard deviation of noise (sd). In traditional
evaluations of usability, most often the detection skill was
calculated only. Although this kind of examinations provide
valuable information about the properties of homogenisation
methods, the results do not give direct information about the
effectiveness of the methods, for three reasons: (i) Real prop-
erties of observed climatic time series are very different from
this simple model, (ii) In the calculation ofD the use of some
arbitrary parameters is unavoidable, (iii) Detection skill, hit
rate, false alarm rate, etc. do not provide direct information
about the success in improving the reliability of trends and
long-term fluctuations in time series. These ideas had al-
ready been taken into account (though in a relatively initial
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Figure 1. Magnitude-distribution of real and detected IHs (change-
points) when the mean frequency of change-points is 5 per 100 yr,
and shift-magnitudes have normal distribution with 0 peak and 3.5
times larger standard deviation thansd. On the abscissaM means
magnitude proportioned tosd, while frequencies (f ) are shown with
an arbitrary unit. Homogenisation methods: C-M – PRODIGE,
MAS – Multiple Analysis of Series for Homogenization, MLR –
Multiple Linear Regression, SNH – Standard Normal Homogeneity
Test.
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Figure 2. The same as Fig. 1, but 5 Pfm (i.e. 10 change-points of
platform-like IHs) per 100 yr are included in time series instead of
persistent shifts. Length of platforms has equal distribution between
1 month and 10 yr.

level) in some studies before the COST HOME. Menne and
Williams (2005, 2009) analysed the efficiency of homogeni-
sation methods applying test dataset in which the sizes of IHs
have normal distribution with zero peak. Domonkos (2008,
2011) built a test dataset whose statistical characteristics are
very close to an observed temperature dataset and used vari-
ous measures for assessing efficiency.

After examining the homogeneity of radiosonde time se-
ries, Sherwood (2007) stated: “. . . detection of change-points
is neither realistic nor necessary, . . . success should be mea-
sured instead by the integrity of climate signals.” This the-
sis is valid also for time series of surface observations. The
statistical properties of true and detected IHs often differ
markedly. In Figs. 1–2 some experimental results are shown
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that obtained by examining sets of 10 000 artificial time se-
ries including 5 change-points (Fig. 1), or 5 Pfms (Fig. 2).
When the sizes of IHs are relatively large, the amount of de-
tected IHs approaches well their true frequency, but for small
IHs detection is often impossible by any of the known ho-
mogenisation methods. The ratio of undetected IHs is con-
siderably higher when Pfms occur in time series.

Thinking over Sherwood’s thesis it can be stated that time
series homogenisation is the utilisation of the spatially re-
dundant information for the improvement of reliability of
time-variability in data. (Note that instead of or beside the
spatial redundancy, other pieces of information or assump-
tions can also be used for homogenisation, but in climato-
logical studies it is not typical and usually not recommend-
able.) Characteristics of effective homogenisation methods
are: (i) maximal exploitation of spatial information, (ii) high
skill in finding timings of IHs, (iii) ability to treat common
effects of multiple IHs, (iv) application of an appropriate cor-
rection method.

In testing efficiency the most reliable results can be ob-
tained when statistical properties of artificial datasets are
close to those of observed datasets. For obtaining test
datasets with realistic properties, characteristics of detected
IHs should be compared between observed data and artifi-
cial data (Domonkos, 2008, 2011). The results of this kind
of tests indicate that in observed climatic time series small
shifts and Pfms are frequent, thus their direct and indirect
effects must be taken into account in the evaluation of ho-
mogenisation methods.

4 Common effects of multiple inhomogeneities

In most homogenisation methods used in climatic studies
(Standard Normal Homogeneity Test (SNHT), Alexander-
sson, 1986; Multiple Linear Regression (MLR), Vincent,
1998; Penalised Maximal t-test (PMT), Wang et al., 2007,
etc.) a step-by-step procedure is applied, in which meth-
ods detect only one IH in a particular step, thereafter time
series are cut into two parts at the timing of the detected
change-point. This cutting algorithm can be transformed to
semi-hierarchic algorithm with supplying the procedure with
some other steps (Lanzante, 1996; Moberg and Alexanders-
son, 1997, etc.), but experimental results indicate that semi-
hierarchic algorithms do not provide substantial improve-
ment relative to the cutting algorithm (Domonkos, 2011).
Some methods detect multiple structures of IHs in a direct
way (Multiple Analysis of Series for Homogenisation, Szen-
timrey, 1999; PRODIGE, Caussinus and Mestre, 2004, these
are referred as “direct methods” hereafter). When the num-
ber of IHs is low, cutting algorithm and semi-hierarchic algo-
rithm may function efficiently (Menne and Williams, 2005),
but for complex structures of IHs only the direct methods are
powerful (Domonkos, 2011).

 
 

Figure 3. An example for complex structures of IHs. The horizon-
tal axis is for the serial numbers of years, while in the vertical axis
cumulative effects of IHs are shown. Noise is excluded for the sake
of demonstrativeness.

To demonstrate the limitations of hierarchic methods, a
theoretical example is presented here, i.e. a particular struc-
ture of IHs without noise (Fig. 3). In this example the largest
shift is just in the middle of the time series and the means
for the two halves of the time series are the same. For this
kind of IH-structure, hierarchic algorithms are often inca-
pable of detecting the largest IH in the first step, particularly
when significance-examinations are based on the step-by-
step comparison of some statistical characteristics between
two parts of the series (SNHT, PMT, extremes of accumu-
lated anomalies, as well as non-parametric methods, as for
instance the Wilcoxon Rank Sum Test (WRS), Wilcoxon,
1945). However, a failure in finding the largest IH in the
first step might affect the final results of the homogenisation
procedure in hierarchic methods, since (i) the other (smaller)
IHs can be detected with relatively low certainty because of
their small size, (ii) in hierarchic algorithms a possible er-
ror in the first step introduces bias for the initial condition of
later steps.

The performance of six detection methods (Easterling
and Peterson method (E-P, Easterling and Peterson, 1995),
MASH, MLR, PRODIGE, SNHT, WRS) is analysed by sup-
plying the IH-structure of Fig. 3 with standard white noise
in 10 000 simulation experiments. Detection powers for the
different methods in function of the IH-size relative tosd are
calculated for the largest IH in the middle of the time series.
The results are shown in Fig. 4, and it can be seen that the
direct methods are really more effective than the hierarchic
methods in identifying the largest IH of the time series. On
the other hand, E-P has an even better Pw, than the direct
methods. Note that E-P does not belong to the direct meth-
ods, nor to the hierarchic methods. In Fig. 5 the detection
skills are shown for the same methods and IH-structures, as
they included in Fig. 4. In the calculation ofD all the IHs
of the time series were taken into account. The results show
that for small IHs the E-P still has the best performance, but
when the IH sizes are larger than the background noise, the
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 Figure 4. Power of detection for the largest IH of Fig. 3. On the
abscissa the unit issd.
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Figure 5. Detection skill for all IHs of Fig. 3. On the abscissa the
unit is sd.

PRODIGE and MASH perform best. It is interesting to see
that the MLR which has relatively good skill in detecting the
largest IH (because the significance test of MLR is based on
the autocorrelation of the tested series and not on the com-
parison of characteristics between two parts of the series),
loses this advantage relative to SNHT and WRS when all the
detection results are evaluated together. Figure 6 shows the
efficiencies in the improvement of RMSE. These results have
two striking features, i.e. (a) in case of small-size IHs all the
efficiencies are markedly negative, (b) one of the six methods
examined, namely the E-P, always performs with negative ef-
ficiency when the IH-sizes are lower than 2.5. The latter is
the consequence of the fact that in E-P the time-coherence
between the pieces of the detection results is less organised
than in an hierarchic method (and even less organised than
in direct methods). The results of E-P provide clear evidence
that the examination of detection skill (detection power, false
alarm rate, etc.) is not satisfactory in itself to evaluate the ef-
ficiency of homogenisation methods. On the other hand, the
negative efficiencies for low-size IHs must not discourage
users from applying homogenisation methods: The RMSE
error in raw time series of 0.5 characteristic IH-size is only
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Figure 6. Efficiency in reducing RMSE when the IH-structure is
the same as in Fig. 3. On the abscissa the unit issd.

Domonkos, P., Fig. 7

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5

Δ
(R

M
S

E
)

E-P MASH MLR PRODIGE SNHT WRS

Figure 7. The same as Fig. 6, but the improvement of RMSE-
error is presented on an absolute scale.∆(RMSE)= RMSEraw −

RMSEhomogenised.

4 % of the RMSE in raw time series with IHs of size 2.5.
Thus, in absolute scale (Fig. 7), time series with low-size
IHs (or without IH) might suffer a little corruption, while
the quality of time series with large IHs can be improved
markedly by the application of homogenisation methods. In
the present experiment, PRODIGE performs best for IH sizes
of larger than 1.25, while there is very little difference among
the efficiencies of MASH, MLR, SNHT and WRS. Other
experiments (Domonkos, 2011) confirm that (a) PRODIGE
performs best when large- or medium-size IHs occur in
time series, (b) PRODIGE and MASH have markedly better
detection skills than other methods when complicated IH-
structures occur in time series, (c) PRODIGE usually has
superior performance in estimating linear trends with ho-
mogenised time series, (d) methods that do not consider the
connections between the pieces of the detection results for in-
dividual IHs, either by direct algorithms or hierarchic algo-
rithms, cannot be recommended for homogenising climatic
time series, because the resultant time series often contain
large errors, even if the detection skills of the methods are
good.
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5 Spatial comparison of time series

Since rapid temporal changes in climatic time series might
occur also by true climatic variability, homogenisation meth-
ods are usually applied to differences of the raw time series.
By generating these series the impact of climatic variabil-
ity is reduced, because it is common for a given climatic re-
gion. However, a general problem of the spatial comparisons
is that IH-detection results might be affected by the IHs in
the series with which the candidate series are compared. Ide-
ally, homogeneous reference series should be found for each
candidate series. As this expectation is unrealistic, often
a series of pair-wise comparisons is recommended instead
of using fixed reference series (e.g. Caussinus and Mestre,
2004). In pair-wise comparisons, change-points existing in
any time series of the network are searched and treated indi-
vidually. However, pair-wise comparison methods also have
drawbacks: (i) They use restricted number of series from the
neighbourhood (i.e. in one particular comparison only one
time series), thus noise and undetected IHs might cause rel-
atively large errors; (ii) Skilled algorithms of multiple pair-
wise comparisons can be too complicated for applying them
in automatic procedures.

In recent efficiency examinations using the benchmark
dataset of COST HOME, it turned out that a traditional
creation of reference series may provide competitive effi-
ciency. The method ACMANT (Domonkos et al., 2011)
which is a modified and automated version of PRODIGE,
performed with efficiency similar to the best of other meth-
ods (PRODIGE and MASH, Venema et al., 2010). The role
of individual IHs in composites of reference series declines
with the increase of the number of the composites. This fact
is exploited in ACMANT in the way that the reference se-
ries is the weighted average of surrounding time series, as
it was recommended by Peterson and Easterling (1994). In
the present version of ACMANT the number of reference-
composites is unlimited, and the minimum threshold of ac-
ceptable spatial correlation is 0.4. Notwithstanding, the au-
thor thinks that the optimal way of spatial comparison needs
much further examination, because it is hard to find the op-
timal combination of the following two competitive aspects:
On the one hand, impacts of climatic differences (which is
indicated by relatively low spatial correlation) should be ex-
cluded by using a limited number of composites in build-
ing reference series, but, on the other hand, impacts of unde-
tected IHs and noise should be reduced by including as many
composites as possible, since with the use of a larger number
of composites the effects of individual errors in composites
decrease. Naturally, if effective and user-friendly versions
of pair-wise comparisons are available, their use will also be
recommendable.

6 Discussion and conclusions

The developers and users of homogenisation methods have
to bear in mind that the eventual purpose of homogenisation
is not to find change-points, but to obtain an improvement
in the quality of the observational datasets that gives the op-
portunity to achieve more precise and more reliable results
in climate change and climate variability analyses. Some old
rules and recommendations should be re-evaluated. For in-
stance, the performance of homogenisation methods depends
on the connections between the pieces of the detection re-
sult, thus individual subjective decisions for selected change-
points (e.g. using metadata information) may introduce un-
desired uncertainty to the overall efficiency of the procedure.
Further examinations are needed also to find the optimal way
of spatial comparison. As examples show, pair-wise compar-
ison technique, but also the classic way of building reference
series may both work with high efficiency within some ho-
mogenisation procedures.

The selection of the best homogenisation methods has to
be based on efficiency tests executed on artificial databases of
climatic time series with realistic statistical properties. We
should go further on the way that is marked by the COST
HOME activity.
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