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Abstract. In the recent decades various homogenisation methods have been developed, but fiecteaf e

their application on time series are still not knowrffsuently. The ongoing COST action HOME (COST
ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher
confidence than earlier. As a part of the COST activity, a benchmark dataset was built whose characteristics
approach well the characteristics of real networks of observed time series. This déxsetmch better
opportunity than ever before to test the wide variety of homogenisation methods, and analyse tfieatsal e

of selected theoretical recommendations.

Empirical results show that real observed time series usually include several inhomogeneittesaftdizes.

Small inhomogeneities often have similar statistical characteristics than natural changes caused by climatic
variability, thus the pure application of the classic theory that change-points of observed time series can be
found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal
changes and long-term fluctuations of time series are usually much closer to the reality than in raw time
series. Some problems around detecting multiple structures of inhomogeneities, as well as that of tirne series
comparisons within homogenisation procedures are discussed briefly in the study.

1 Introduction (i) Homogenisation methods are tested in simulateq

databases whose properties approach well the real proper

To obtain a precise and reliable picture about the climaticties of networks of observed climatic time series; (i) The
variability of the period with instrumental observation meth- performance of homogenisation methods is evaluated by cd
ods, it is necessary to eliminate the influence of technicalulating RMSE between corrected time series and the corr¢
changes (hereafter: inhomogeneity, IH) in the observationsponding homogeneous time series, as well as calculating t
systems. Therefore, together with the collection and archivmean bias of linear trends between corrected time series a
ing the observational data, a special branch of quality conperfect time series.

trol developed for managing this kind of problem, i.e. the | this study some theoretical problems related to the ap
so-called time series homogenisation. During this developyjication of homogenisation methods are briefly described
ment, a large number of statistical methods were introducedgnq an example is shown for demonstrating the superior pel
Recently, enhancedferts have been devoted to compare andormance of the detection methods whose algorithm include

evaluate theféiciency of diferent methods and this is notan 4 girect identification of multiple structures of change-points
easy task, because in real observed datasets the true statisti-

cal properties of IHs are never known exactly. Among other
efforts the COST HOME has brought dynamism to these ex-,
aminations. The present epoch of research on homogenisa-
tion methods can be characterized with the following new
lines:

Methods and definitions

Two, frequently appearing forms of IHs are defined here
Note that other forms may also occur, but they are not dis
cussed in this study.

— Change-point A sudden shift in the mean of the obser-
Correspondence td?. Domonkos vational values. It is the most frequent form of IH, since
m (peter.domonkos@urv.cat) most technical changes happen abruptly.
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— Platform-like inhomogeneityPfm]: Pair of change- f
points of the same size, but of the opposite direction. 4000
—.True
Concepts related tdiéciency-evaluation: 2000 /\\,\ Iﬁ}iﬂs 777777
— Correct detectionWhen an IH is detected in ye@rand - MLR
an IH really exists in sectionj[-2, j +2]. 2000 | - SNH
— False detectionin the detection result an IH is included
in year j, and no IH exists in sectionj[F 2, j+2]. 1000 -
Note: If two IHs are detected around a really existing
IH (e.g. an IH really exists in yeal, but the detection e ...~ U i
results indicate two IHs, one ij-2 and another one in 0 1 2 3 4 5 6 7 M
j+2) one of them is sorted into the correct detections,
but the other one into the false detections. Figure 1. Magnitude-distribution of real and detected IHs (change-

points) when the mean frequency of change-points is 5 per 100yr,
and shift-magnitudes have normal distribution with O peak and 3.5
. times larger standard deviation than On the abscissd means

S, respectively. magnitude proportioned t&, while frequenciesf() are shown with

an arbitrary unit. Homogenisation methods: C-M — PRODIGE,
MAS — Multiple Analysis of Series for Homogenization, MLR —
Sk Multiple Linear Regression, SNH — Standard Normal Homogeneity

Pw= 1 Test.
W= @

The total number of correct detections, that of false de-
tections and that of true IHs are denotedSp; Sk and

— Power of detectiorfPw):

In Eq. (1),S stands for the total number of true IHs. 8000

— Detection skill(D): 7000 A~ p— g,&e ,,,,,,
6000 -\ e
D= Sr—Se ) 5000 \/\
S 4000 -
— Efficiency of RMSE-reductiofE): In this study the ef- 3000 |

ficiency is characterised by the improvement of root
mean squared error (RMSE) due to homogenisation.

2000 +

1000 -

RMSEaw—RMSEnomogenised 0 )
E= 3 )
RVSE ( ) 0 1 2 3 4 5 6 7

Figure 2. The same as Fig. 1, but 5 Pfm (i.e. 10 change-points of
3 Purpose of homogenisation platform-like IHs) per 100 yr are included in time series instead of

persistent shifts. Length of platforms has equal distribution between
Until the recent years it was common that thfeagency of 1 month and 10yr.

homogenisation methods was evaluated by some set of sim-

ulated time series including a white noise process plus one

or a few change-points whose magnitudes are significantljevel) in some studies before the COST HOME. Menne and
higher than the standard deviation of noisg (In traditional ~ Williams (2005, 2009) analysed théieiency of homogeni-
evaluations of usability, most often the detection skill was sation methods applying test dataset in which the sizes of IHs
calculated only. Although this kind of examinations provide have normal distribution with zero peak. Domonkos (2008,
valuable information about the properties of homogenisation2011) built a test dataset whose statistical characteristics are
methods, the results do not give direct information about thevery close to an observed temperature dataset and used vari-
effectiveness of the methods, for three reasons: (i) Real propeus measures for assessiriagency.

erties of observed climatic time series are vefjedtent from After examining the homogeneity of radiosonde time se-
this simple model, (ii) In the calculation @f the use of some ries, Sherwood (2007) stated: “.. . detection of change-points
arbitrary parameters is unavoidable, (iii) Detection skill, hit is neither realistic nor necessary, . ..success should be mea-
rate, false alarm rate, etc. do not provide direct informationsured instead by the integrity of climate signals.” This the-
about the success in improving the reliability of trends andsis is valid also for time series of surface observations. The
long-term fluctuations in time series. These ideas had alstatistical properties of true and detected IHs ofteffiedi
ready been taken into account (though in a relatively initial markedly. In Figs. 1-2 some experimental results are shown
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that obtained by examining sets of 10000 artificial time se- 1.5
ries including 5 change-points (Fig. 1), or 5Pfms (Fig. 2).
When the sizes of IHs are relatively large, the amount of de- ! ) ’ i
tected IHs approaches well their true frequency, but for small 0.5 = 0| o) -
IHs detection is often impossible by any of the known ho-
mogenisation methods. The ratio of undetected IHs is con- Lk i B
siderably higher when Pfms occur in time series. -0.5 -
Thinking over Sherwood’s thesis it can be stated that time i
series homogenisation is the utilisation of the spatially re-
dundant information for the improvement of reliability of -1.5
time-variability in data. (Note that instead of or beside the 1 21 41 61 81

spatial redundancy, other pieces of information or assump-

tions can also be used for homogenisation, but in climato-Figure 3. An example for complex structures of IHs. The horizon-
logical studies it is not typical and usually not recommend-tal axis is for the serial numbers of years, \_Nhlle in the vertical axig
able.) Characteristics offfective homogenisation methods cumulative ﬁepts of IHs are shown. Noise is excluded for the sake
are: (i) maximal exploitation of spatial information, (ii) high of demonsirativeness.
skill in finding timings of IHs, (iii) ability to treat common

effects of multiple IHs, (iv) application of an appropriate cor- s . . )
rection method. To demonstrate the limitations of hierarchic methods, a

| g dfici h liabl | be ob theoretical example is presented here, i.e. a particular strug-
h testing dficiency the most reliable results can be ob- .o of |4 without noise (Fig. 3). In this example the largest

tained when statistical properties of artificial datasets aregp it is just in the middle of the time series and the means$

glose to thohse olf_ qbserved _datasr(]ats. Fc_)r.obtaflr:jlng tesg)r the two halves of the time series are the same. For this
atasets with realistic properties, characteristics of detecteg;,y ¢ IH-structure, hierarchic algorithms are often inca-

IHsl (sjhoul?:)be c0£1par2ed0bet£/;/)eleln o_ll_Jﬁerved Idata:c ahr}d I‘jrtg'ﬁable of detecting the largest IH in the first step, particularly
cial data (Domonkos, 2008, )- The results of this kin when significance-examinations are based on the step-bjy-

of tests indicate that in observed climatic time series smallStep comparison of some statistical characteristics betwegn

shifts and Pfms are frequent, thus their direct and indirect, parts of the series (SNHT, PMT, extremes of accumul
effects must be taken into account in the evaluation of ho'lated anomalies, as well as non-parametric methods, as for

mogenisation methods. instance the Wilcoxon Rank Sum Test (WRS), Wilcoxon,

1945). However, a failure in finding the largest IH in the

first step might &ect the final results of the homogenisation
4 Common effects of multiple inhomogeneities procedure in hierarchic methods, since (i) the other (smalle

IHs can be detected with relatively low certainty because o
In most homogenisation methods used in climatic studiegheir small size, (i) in hierarchic algorithms a possible er-
(Standard Normal Homogeneity Test (SNHT), Alexander-for in the first step introduces bias for the initial condition of
sson, 1986; Multiple Linear Regression (MLR), Vincent, later steps.
1998; Penalised Maximal t-test (PMT), Wang et al., 2007, The performance of six detection methods (Easterling
etc.) a step-by-step procedure is applied, in which meth-and Peterson method (E-P, Easterling and Peterson, 1995),
ods detect only one IH in a particular step, thereafter timeMASH, MLR, PRODIGE, SNHT, WRS) is analysed by sup-
series are cut into two parts at the timing of the detectedplying the IH-structure of Fig. 3 with standard white noise
change-point. This cutting algorithm can be transformed toin 10 000 simulation experiments. Detection powers for the
semi-hierarchic algorithm with supplying the procedure with different methods in function of the IH-size relativestcare
some other steps (Lanzante, 1996; Moberg and Alexanderszalculated for the largest IH in the middle of the time series
son, 1997, etc.), but experimental results indicate that semiThe results are shown in Fig. 4, and it can be seen that the
hierarchic algorithms do not provide substantial improve-direct methods are really mordfective than the hierarchic
ment relative to the cutting algorithm (Domonkos, 2011). methods in identifying the largest IH of the time series. On
Some methods detect multiple structures of IHs in a directthe other hand, E-P has an even better Pw, than the direct
way (Multiple Analysis of Series for Homogenisation, Szen- methods. Note that E-P does not belong to the direct meth
timrey, 1999; PRODIGE, Caussinus and Mestre, 2004, theseds, nor to the hierarchic methods. In Fig. 5 the detectiof
are referred as “direct methods” hereafter). When the numskills are shown for the same methods and IH-structures, as
ber of IHs is low, cutting algorithm and semi-hierarchic algo- they included in Fig. 4. In the calculation &f all the IHs
rithm may function éiciently (Menne and Williams, 2005), of the time series were taken into account. The results show
but for complex structures of IHs only the direct methods arethat for small IHs the E-P still has the best performance, but
powerful (Domonkos, 2011). when the IH sizes are larger than the background noise, the
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Figure 4. Power of detection for the largest IH of Fig. 3. On the Figure 6. Efficiency in reducing RMSE when the IH-structure is
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Figure 7. The same as Fig. 6, but the improvement of RMSE-
error is presented on an absolute sScaRMSE) = RMSE,,, —
RMSE‘lomogenised

Figure 5. Detection skill for all IHs of Fig. 3. On the abscissa the
unit is sy.

PRODIGE and MASH perform best. It is interesting to see

that the MLR which has relatively good skill in detecting the 4 % of the RMSE in raw time series with IHs of size 2.5.
largest IH (because the significance test of MLR is based orThus, in absolute scale (Fig. 7), time series with low-size
the autocorrelation of the tested series and not on the comiHs (or without IH) might siffer a little corruption, while
parison of characteristics between two parts of the series}the quality of time series with large IHs can be improved
loses this advantage relative to SNHT and WRS when all thenarkedly by the application of homogenisation methods. In
detection results are evaluated together. Figure 6 shows thilhe present experiment, PRODIGE performs best for IH sizes
efficiencies in the improvement of RMSE. These results haveof larger than 1.25, while there is very littleffirence among
two striking features, i.e. (a) in case of small-size IHs all thethe dficiencies of MASH, MLR, SNHT and WRS. Other
efficiencies are markedly negative, (b) one of the six methodsxperiments (Domonkos, 2011) confirm that (a) PRODIGE
examined, namely the E-P, always performs with negative efperforms best when large- or medium-size IHs occur in
ficiency when the IH-sizes are lower than 2.5. The latter istime series, (b) PRODIGE and MASH have markedly better
the consequence of the fact that in E-P the time-coherencdetection skills than other methods when complicated IH-
between the pieces of the detection results is less organisestructures occur in time series, (¢) PRODIGE usually has
than in an hierarchic method (and even less organised thasuperior performance in estimating linear trends with ho-
in direct methods). The results of E-P provide clear evidencenogenised time series, (d) methods that do not consider the
that the examination of detection skill (detection power, falseconnections between the pieces of the detection results for in-
alarm rate, etc.) is not satisfactory in itself to evaluate the ef-dividual IHs, either by direct algorithms or hierarchic algo-
ficiency of homogenisation methods. On the other hand, theithms, cannot be recommended for homogenising climatic
negative €iciencies for low-size IHs must not discourage time series, because the resultant time series often contain
users from applying homogenisation methods: The RMSHarge errors, even if the detection skills of the methods are
error in raw time series of 0.5 characteristic IH-size is only good.
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5 Spatial comparison of time series 6 Discussion and conclusions

Since rapid temporal changes in climatic time series mightthe developers and users of homogenisation methods haye
occur also by true climatic variability, homogenisation meth- to bear in mind that the eventual purpose of homogenisation
ods are usually applied toftierences of the raw time series. s not to find change-points, but to obtain an improvement
By generating these series the impact of climatic variabil-jn the quality of the observational datasets that gives the op-
ity is reduced, because it is common for a given climatic re-portunity to achieve more precise and more reliable results
gion. However, a general problem of the spatial comparisonsn climate change and climate variability analyses. Some ol¢l
is that IH-detection results might befected by the IHs in  ryles and recommendations should be re-evaluated. For ip-
the series with which the candidate series are Compared. |d95'[ance, the performance of homogenisation methods depends
ally, homogeneous reference series should be found for eacn the connections between the pieces of the detection re-
candidate series. As this expectation is unrealistic, oftensyit, thus individual subjective decisions for selected change
a series of pair-wise comparisons is recommended insteadoints (e.g. using metadata information) may introduce un
of using fixed reference series (e.g. Caussinus and Mestrejesired uncertainty to the overaffieiency of the procedure.
2004). In pair-wise comparisons, change-points existing inFyrther examinations are needed also to find the optimal way.
any time series of the network are searched and treated |ndbf Spatia] Comparison_ As examp|es ShOW, pair-Wise compa
vidually. However, pair-wise comparison methods also haveison technique, but also the classic way of building referenc
drawbacks: (i) They use restricted number of series from theseries may both work with highfieciency within some ho-
neighbourhood (i.e. in one particular comparison only ONneémogenisation procedures.

time series), thus noise and undetected IHs might cause rel- The selection of the best homogenisation methods has o
atively large errors; (ii) Skilled algorithms of multiple pair- e hased onfciency tests executed on artificial databases of
wise comparisons can be too complicated for applying them|imatic time series with realistic statistical properties. Wej

in automatic procedures. . should go further on the way that is marked by the COST
In recent diciency examinations using the benchmark yomEe activity.

dataset of COST HOME, it turned out that a traditional
creation of reference series may provide competitiffe e
ciency. The method ACMANT (Domonkos et al., 2011)
which is a modified and automated version of PRODIGE,
performed with iciency similar to the best of other meth-
ods (PRODIGE and MASH, Venema et al., 2010). The role SC ‘ nat
of individual IHs in composites of reference series declines

with the increase of the number of the composites. This fact

is exploited in ACMANT in the way that the reference se- References
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