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Abstract 
 
Any change in technical or environmental conditions of observations may result in bias from the precise 
values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually 
appear in a form of sudden shift or gradual trends in the time series of any variable, and the timing of the 
shift indicates the date of change in the conditions of observation. The seasonal cycle of radiation intensity 
often causes marked seasonal cycle in the IHs of observed temperature time series, since a substantial portion 
of them has direct or indirect connection to radiation changes in the micro-environment of the thermometer. 
Therefore the magnitudes of temperature IHs tend to be larger in summer than in winter. A new homogenisa-
tion method (ACMANT) has recently been developed which treats in a special way the seasonal changes of 
IH-sizes in temperature time series. The ACMANT is a further development of the Caussinus-Mestre method, 
that is one of the most effective tool among the known homogenising methods. The ACMANT applies a 
bivariate test for searching the timings of IHs, the two variables are the annual mean temperature and the 
amplitude of seasonal temperature-cycle. The ACMANT contains several further innovations whose effi-
ciencies are tested with the benchmark of the COST ES0601 project. The paper describes the properties and 
the operation of ACMANT and presents some verification results. The results show that the ACMANT has 
outstandingly high performance. The ACMANT is a recommended method for homogenising networks of 
monthly temperature time series that observed in mid- or high geographical latitudes, because the harmonic 
seasonal cycle of IH-size is valid for these time series only. 
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1. Introduction 
 
For achieving reliable information about climate vari-
ability, large amount of observed time series of high 
quality is needed. One principal tool for improving data 
quality is the application of statistical homogenisation. In 
the recent decades large number of homogenisation 
methods have been developed and applied for homoge-
nising climatic time series. In these methods large scale 
of statistical tools are applied for detecting change-points 
or trends of non-climatic origination (i.e. inhomogenei-
ties [IH]) in observed meteorological time series. The 
main tools of IH detection are a) examination of accu-
mulated anomalies [1], b) rank-order statistics [2,3], c) 
multiple linear regression [4,5], d) t-test based examina-
tions [6,7], e) multiple analysis with Fisher-test [8], f) 

fitting step-function [9]. Looking through reviewing arti-
cles about homogenisation methods [10-17] it can be 
seen that we know many details about homogenisation 
methods, but uncertainties still exist about their efficien-
cies, or with other words, about the practical usefulness 
of individual methods.  

The recently developed ACMANT homogenisation 
method has some characteristics those are absolutely new, 
and may influence positively the effectiveness of homo- 
genisation. The most important innovation in ACMANT 
is that it uses bi-variable test for detecting IHs in 
monthly series of temperatures. The two variables are the 
annual mean temperature and the amplitude of seasonal 
cycle. Considering that the sizes of IHs in temperature 
series often have seasonal cycle of considerable ampli-
tude [18,19], the selected two variables often have 
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change-points in the same time. The chance of right de-
tection increases when the change-points with common 
time-points are searched with unified test for the two 
variables. In ACMANT IHs with gradually changing 
deviation from the correct values are approached by se-
ries of change-points, similarly as in many other ho-
mogenisation methods. 

The paper describes the operation of the whole homo- 
genisation procedure, discusses its general properties, 
and gives information about its effectiveness. The orga- 
nisation of the paper is as follow: The next section gives 
a general picture about the main properties of ACMANT, 
and describes the conditions of its practical application. 
Section 3 describes the main functions of ACMANT in 
detailed. In section 4 the operation of ACMANT is 
summarised and its steps are presented in the true se- 
quence. In section 5 some verification results are pre- 
sented. Finally, in section 6, the properties of ACMANT 
and the verification results are discussed, and conclu- 
sions are drawn. The paper has an appendix with the ex- 
planation of symbols applied. 
 
2. Main Properties of ACMANT 
 
1) A fully automated method. 

2) The use of ACMANT is recommended for tem-
perature series from mid- and high-latitudes, since its 
algorithm supposes quasi-harmonic annual cycle of con-
siderable amplitude in IH-sizes. 

3) Relative homogenisation method, thus it can be 
used for networks, and not for solely time series. Basi-
cally, the ACMANT applies the traditional comparison 
of candidate series – reference series pairs. Reference 
series are always built from minimum two component 
series. A speciality of ACMANT that if the time series of 
the network have observed values for different time pe-
riods, it may use different reference series for different 
sections of the same candidate series and the selection of 
reference series is automatic. 

4) ACMANT incorporates the best detection and cor-
rection algorithms of known homogenisation methods, 
i.e. the detection part is based on the PRODIGE [9] 
method, while the final correction of time series is made 
with ANOVA [9]. 

5) Main novelties of ACMANT relative to PRODIGE: 
i) It applies the Caussinus – Mestre detection method 
jointly to two variables, i.e. to annual means, and sum-
mer-winter differences; ii) Fully automatic generation of 
reference series, iii) Pre-homogenisation for preparing 
composites of reference series of better quality than in 
the raw dataset, iv) Separated way of detection for 
long-term IHs and short-term IHs; v) After the calcula-
tion of correction-terms by ANOVA, those IHs that turn 

out to be insignificant are deleted from the list of IHs, 
and the ANOVA procedure is repeated with a reduced 
list of IHs. 

6) Two types of IH-detection are included in 
ACMANT, i.e. the Main Detection is for long-term IHs 
(generally with at least 3 years duration), while the Sec-
ondary Detection is for large-size but short-term IHs. 
Both detection segments are developed from the Caussi-
nus-Mestre detection algorithm. 

7) The lengths of raw time series in a network can be 
different, and they may cover different time periods. Any 
candidate time series or a section of candidate series is 
subdued to homogenisation with ACMANT if at least 
two partner time series exist in the network that cover the 
period of the candidate series or its section and have at 
least 0.5 autocorrelation with the candidate series. 

8) Time series often contain large number of missing 
values. If the ratio of missing values exceeds some preset 
thresholds in some section(s) of the time series that sec-
tions are classified non-applicable sections, while the 
section with acceptable ratio of available data is the ap-
plicable section. According to this, raw time series are 
generally split into three sections, i.e. one applicable sec-
tion and two non-applicable sections before and after the 
applicable section. If the ratio of missing values is ac-
ceptably low in the tails of the time series, there are no 
non-applicable sections in the time series. The minimum 
ratio of available data is 25% in the first k years and last 
k years of the applicable section, for any k, k = 
{1,2,…15}, as well as the minimum ratio is 16,7% for 
any 30-year subsection of the applicable section. A time 
series must not contain more than one applicable section 
(i.e. the applicable section cannot be separated into two 
parts by a long pause of observation). The minimum 
length of applicable section is 30 years. 

9) The ACMANT has own segments for filling miss-
ing data and for substituting outlier values. For this pur-
pose spatial interpolation is applied. However, data of 
non-applicable sections are not treated, and they do not 
used at all during the homogenisation procedure. 

10) Input data-field for ACMANT: Monthly tempera-
ture characteristics with monthly time resolution. The 
lengths of time series may be different, but the data- 
fields of each series are required to be converted into a 
common format (which format includes the same number 
of data for each temperature series) in a way that missing 
values are filled with -999.9. After the preparation only 4 
parameters have to be introduced before application: a) 
Length of time series, b) First year of time series, c) 
Number of time series in the network, d) Identifier of 
network. 

11) The result of homogenisation is a) Timings and 
sizes of inhomogeneities (IHs) for each series. b) Tim-
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ings of outliers. c) Filled data-gaps caused by missing 
values or outliers inside the series. d) Homogenised time 
series. Sizes of IHs are characterised with two variables: 
a) shift in annual means, b) shift in the amplitude of sea-
sonal cycle. 
 
3. Main Functions of ACMANT 
 
3.1. Basic definitions 
 
Before the description of the operation of ACMANT, 
definitions of some basic statistical concepts are pre-
sented. 

Time average of series X (denoted with upper stroke): 

1

1 n

i
i

x
n 

 X              (1) 

Standard deviation of series X: 

   2

1

1 n

i
i

x
n




 X X         (2) 

Time average of section [j1, j2] of series X: 
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Note that standard deviation for selected section of 
time series is defined and denoted with the same logic as 
section-average by Eqution (3). 

Derivation of anomaly for station s, year j and month 
m: 
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Missing values are represented with xs,i,m = 0, while n’ 
stands for the number of available observed values in 
Xs,m in Eqution (4). Note that due to missing values the 
simple time-average cannot be used in Eqution (4). 

ACMANT counts with anomalies during its whole 
procedure, only in the last step the climatic means (the 
second term in the right hand of Eqution (4) are added 
back to the homogenised anomaly series. 

Spatial correlation: 
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(5) 
In Eqution (5) g and s denote stations, h is the serial 

number of month from the beginning of time series (here 
time has one dimension only), hngs, hxgs and n’gs denote 

the first month, the last months and total number of 
months, for which observed data exist in both series, 
respectively. Missing values of Ag and As are represented 
with 0 in Eqution (5). 
 
3.2. Filling the Gaps of Time Series 
 
This operation can be considered as one step of the 
preparation of time series, because further segments of 
ACMANT require continuous data series. However, on 
the other hand, this operation is part of the ACMANT, 
and it is performed automatically. 

The interpolation for a missing value of month h in the 
candidate series (Ag) relies on the same date values of 
surrounding stations. All the time series of minimum 0.4 
spatial correlation with the candidate series are used in 
the interpolation, if they have observed value for month 
h. The interpolated value is a weighted average of the 
anomalies of the partner time series in h. For this inter-
polation, section-anomalies (a[h1,h2]) are calculated for the 
symmetric window (h1,h2] around h. The number of ob-
served values used (n’) is usually 100 or 101, i.e. the 
procedure search h1 and h2 for which h2 – h = h – h1, and 
n’ε [100,101]. However, when the window is 2x10 years 
wide, i.e. h2 – h1 = 240 and n’ is still smaller than 100, 
n’ε [30,99] is accepted. In case of  h2 – h1 = 240, and n’ 
< 30, the window-width widens further, and it stops 
when  n’ε [100,101], or when h2 – h1 = 360. Eqution (6) 
shows the calculation of section-anomalies for series s. 
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Missing values of As are represented with zero in 
Eqution (6). 

The interpolated value is the weighted average anom-
aly of  N* surrounding series which is added to the pe-
riod-average of Ag. The weights are the squared spatial 
correlations. When the sum of squared correlations is 
lower than a fixed threshold (0.64), zero anomaly 
ag,h[h1,h2] = 0 is presumed with a certain or entire weight, 
according to Equtions (7) and (8). 
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The gap-filling has to be accomplished before the 
other steps in ACMANT. However, the first estimations 
are not final, after some steps of pre-homogenisation the 
interpolation is repeated in the same way as it is pre-
sented here, but with the use of data of higher quality. 
There is one difference in the second round of the inter-
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polation process, namely n’ < 100 (more exactly: n’ε 
[30,99]) for window (h1,h2] is expected only when h2 – h1 

= 360. 
 
3.3. Constructing Relative Time Series 
 
3.3.1. General Rules of Constructing Relative Time 

Series in ACMANT 
ACMANT makes relative homogenisation which relies 
on the spatial comparison of time series. The way of this 
comparison basically follows the traditional rules intro-
duced by [20], and applied later widely [21,23]. The 
relative time series are the arithmetical differences of the 
candidate series, and the so-called reference series (F) 
(Eqution 9). 

   
1 2 1 2g,q g j , j g j , jT A F       (9) 

In Eqution (9) a section is defined for which the rela-
tive time series is calculated. This section cannot stretch 
out the ends of any reference-composites, or the ends of 
the candidate series. 

Reference series are built from the composition of 
neighbouring series around the candidate series. The 
weights of individual composites depend on the spatial 
correlations between first difference (increment) series. 
In studies about homogenisation methods one can find 
different recommendations about the usefulness of first 
difference series, and about the optimal number of refer-
ence-components. For ACMANT the use of first differ-
ence series was selected (Eqution (10)) for evaluating 
spatial correlations, because possible large IHs might 
affect more seriously the spatial correlations of raw time 
series (R’), than the spatial correlations of first difference 
series (R). 
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Spatial correlations for ∆A are calculated according to 
Eqution (5) with the only difference from that, that at this 
stage there are no missing values in the series, thus in-
stead of n’ the length of the period examined must be 
applied. Denoting with bg,s,h  the product of ∆ag,h and 
∆as,h, the equation can be written in a simpler form 
(Eqution (11)). 
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For determining the number of reference-components 
(S), minimum thresholds for acceptable spatial correla-
tions are introduced. In the present version of ACMANT 
this threshold is relatively low, generally r ≥ 0.4, al-
though for at least two of the components it has to be at 
least 0.5. The application of the relatively low threshold 

values relies on the outcome of some experiments ac-
cording to the use of a large number of reference com-
ponents usually results in good verification results, even 
if the spatial correlations of some components are rela-
tively low. Its explanation is that the increase of refer-
ence components tends to reduce the mean effect of IHs 
and noise in the reference components. 

The acceptable minimum of S is 2, in the reverse case 
homogenisation cannot be fulfilled with ACMANT. Note 
that one pre-selected time series is often excluded from 
the reference composites, it is because during the pre- 
homogenisation the candidate series for which the pre- 
homogenised reference composites will be used must not 
be taken into account in any form to avoid non-desired 
effects of a multiplied use of the same information for 
the same pieces of data in the homogenisation procedure. 
For this reason it may occur that the number of reference 
composites is not more than 1. 

The composition of reference series for a predeter-
mined section [j1,j2] of series Ag is presented by Eqution 
(12). 
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In Eqution (12) w stands for the total weight of the 
reference those composites that have acceptable spatial 
correlation with the candidate series, and available data 
in section [j1,j2] as well (Eqution (13)). 
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3.3.2. Application of Homogenisation-Adjustment for 

Components of Relative Time Series 
When relative time series are created, the candidate se-
ries are always raw or outlier-filtered time series and 
homogenisation-adjustments have not been applied ear-
lier for them, while for reference-composites, homog-
enisation-adjustments are usually applied if adjustment 
factors are available for them at the contemporary phase 
of the procedure. Note that in the description of the algo-
rithm (Sect. 4), certain deviations from these rules will 
be mentioned. 
 
3.3.3. Constructing Different Relative Time Series for 

Different Sections of the Candidate Series 
For sections of the candidate series distinct reference 
series are often built when the number of available series 
with adequately high spatial correlation is larger for a 
section, than for the entire series. In this way usually 
more than one relative time series are produced for one 
candidate series. 

Considering that more than one relative time series 
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can be constructed for one candidate series, we apply an 
index (q) for denoting the individual reference series for 
the same candidate series, while index g will be omitted 
hereafter (since the candidate series is fixed in this ex-
amination). Generally Q reference series belong to one 
candidate series, they starts at year y1,1, y2,1,…yQ,1, while 
their last years are y1,2, y2,2,…yQ,2. Note that the minimum 
length of reference series (yq,2 – yq,1 +1) is 30 years, and 
as reference series never extend over the borders of their 
candidate series, Y also marks the borders of relative 
time series. 

The determination of the set of reference series has 
four main phases. In phase 1 three time series are deter-
mined, i) the one with the highest w (Fopt) ii) the one with 
the earliest yq,1 (y1,1) and iii) the one with the latest yq,2. 
Note that Fopt may have the earliest yq,1 and/or the latest 
yq,2, thus the final number of reference series originated 
from this phase can be lower than 3. 

In phase 2 potential reference series are examined 
whose starting year (yq,1) is after y1,1, but earlier than yopt,1. 
Obviously, when yopt,1 – y1,1 < 2 , this phase is omitted. 
During this examination each possible yq,1 is examined, 
proceeding step-by-step from y1,1+1 until yopt,1 – 1. Two 
parameters (p1 and p2) are monitored during this exami-
nation (Equtions (14) and (15)). 

1 ,1q qp y y             (14) 

2
1

q

q

w
p

w 

              (15) 

A new reference series is selected when a) p2 ≥ 1.3, or 
b) p1 ≥ 5 and p2 ≥ 1.1, or c) p1 ≥ 10 and p2 ≥ 1.03, or d) 
p1 = 30. Once a reference series is selected, the examina-
tions are continued recursively by examining the poten-
tial starting years between yq,1 and yopt,1. It follows from 
the written rules that a new reference series is selected 
with 30 years distance in the starting years at latest. 
However, when the selection is based on condition d) (p1 
= 30), two special cases need more detailed description,: 
i) It may occur that the available reference composites 
for yq–1,1+30 are the same as for yq–1,1. In this case, al-
though there is no new reference series, the procedure 
continues with the virtual yq,1 that equals with yq–1,1+30. 
ii) Although w usually increases between y1,1 and  yopt,1, 
p2 of lower than 1 may occur for a 30-year subsection. In 
this case, the maximal p2 is searched for between yq–1,1+1 
and yq–1,1+30, and the corresponding reference series is 
selected. Especially, it may occur (very rarely for ob-
served climatic time series) that even the maximal p2 
does not satisfy the minimum conditions for creating 
reference series, and a discrete subsection of [yq–1,1+30, 
yopt,1] cannot be subdued to homogenisation, meanwhile 
other sections before and after that subsection can be. 

In phase 3 the symmetric procedure is applied for po-
tential reference series with ending years between yopt,2 
and yq(latest),2 than in phase 2, proceeding backwards, 
step-by-step from yq(latest),2 -1 until yopt,2 +1. 

In phase 4 the selected reference series are ordered 
according to w, and multiple selections of the same ref-
erence series are excluded. 
 

3.3.4. Unified Relative Time Series 
 

We introduce the concept of unified relative time series 
(T+). It will be used for calculating temporary corrections 
and filtering outliers in the section of pre-homogenisa- 
tion. T+ is a combination of Tq series. The reasoning of 
its introduction is empirical, i.e. adjustment factors that 
are derived from different relative time series, often re-
sult in relatively large artificial biases in the low fre-
quency variability of the adjusted time series, even if the 
individual estimations of change-point effects are rela-
tively good. The concept of the unified relative time se-
ries exploits the fact, that a relative time series can be 
modified with an arbitrary constant without any effect on 
the estimation of adjustment factors. 

The set of relative time series is ordered according to 
the decreasing values of w belonging to the relevant ref-
erence series, then the T series are examined one-by-one 
following this order. The values of T+ for year j are de-
termined when the condition of Tq includes tq,j  is satis-
fied first. In the calculation of values for T+ the relevant 
values of Tq are usually adjusted with the mean differ-
ence between T+ and Tq according to Equtions (16)-(18). 
When j lies before the section(s) for which T+ has values 
determined from the previously examined T series, 
Eqution (16) is applied, while Eqution (17) is applied in 
the opposite case. 


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Notes: 
1. Month-indexes for t and t+ are omitted from Eqs. 16 

and 17, first for simplicity, and secondly because often 
some annual characteristics are used in the homogenisa-
tion procedure instead of monthly values (see Sect. 
3.4.1). 

2. Value p is preset before the calculation of unified 
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time series. The value is relatively low (p = 5) in the be-
ginning of the homogenisation procedure, but with the 
advance of the homogenisation it is higher (up to 30). 
The philosophy of limiting p stems from the fact that 
unadjusted change-points may affect the apparent dif-
ference of T+ and Tq, therefore sections that are rela-
tively close to the newly determined values are used only. 
For the very same reason p is lower in the beginning of 
the homogenisation procedure, and with the decreasing 
influence of unadjusted change-points p increases. 

3. The p applied can be lower than its predefined value 
when the number of available value-pairs of T+ and Tq is 
lower than the predefined value of p. When the number 
of applicable p is lower than 3, adjustment is not made, 
i.e. in this case tj

+ = tq,j. It is always the case for q = 1.  
4. It is seldom, but may occur that previously deter-

mined values of T+ exist on both sides of the newly de-
termined values. Introducing Y1

’ for the starting year of 
the right section and Y2

’ for the ending year of the left 
section, and substituting Y1

* and Y2
* in Equtions (16) and 

(17) with them, the estimations of the adjustment factors 
included in the referred formulas are calculated first and 
they are denoted with E1 and E2, respectively. Then a 
linear transition between E2 and E1 provides the adjust-
ment factors for the values between Y2

’ and Y1
’ (Eqution 

(19)). 
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3.4. Detecting IHs with the Main Detection 
 
3.4.1. Detection Process 
In the Main Detection the timings and sizes of IHs are 
searched with fitting step-functions to two variables, 
namely to the annual means (TM) and summer-winter 
differences (TD) in relative time series (Equtions (20) 
and (21)). In the following description the index q of 
relative time series is omitted. 

12

,
1

12

j m
m

j

t
tm 


           (20) 

,5 ,6 ,7 ,8 ,11 ,12 ,1 ,20.5 0.5

3.5
j j j j j j j j

j

t t t t t t t t
td

      
  

(21) 
In Eqution (21) the second index represents calendar 
month. 

Solutions with common timings of steps are consid-
ered only, and the minimum sum of squared errors is 
searched in a similar way as it is described by [24], [9], 
etc. (Equtions (22) and (23)). 

  
1

1 2

' 2 2
2
0

[ , ,... ] 0 1

min
k

K
k

jK

i i
j j j k i j

tm c td


   
     

  
  k kTM TD  (22) 

0 0j  ,           (23) 1Kj   L

L denotes the length of the period examined, in years, 
c0 is constant, while the number of change-points for the 
selected period is K’. k characterises not only the serial 
number of change-points, but the serial number of sec-
tions between adjacent change-points too (Eqution (24)). 

 
k k 1k j 1, jTM TM         (24) 

c0 represents the estimated significance of changes of 
TD in comparison to that of TM in relative time series. 
In its estimation not only the mean sizes, but the sig-
nal/noise rate also had to be taken into account. In the 
present application c0 = 2–0.5. 

For selecting the most appropriate K’, the Caussinus – 
Lyazrhi criterion [25] is applied (Equtions (25) and (26)). 

2 2 2
1 0

0

2 2 2
0

1

( ) ( ) ( )
ln 1

( ) ( )

K

k k
k

L

i i
i

j j c

tm c td

G








          
   
  







k kTM TM TD TD

TM TD
 

(25) 

 2 '
ln

1

K
G

L



L            (26) 

The Main Detection differs in two points from the 
classic Caussinus-Mestre detection method: 

1) Step functions are fitted to two variables, 
2) The minimum distance between two change-points 

is 3 time-units: 

1 3k kj j           (27)  '0 Kkk  
 
3.4.2. Selection of Relative Time Series 
Q different relative time series (T1, T2,…TQ) are derived 
for one candidate series, and they are ordered according 
to the sum of squared correlations of the refer-
ence-composites (w1 > w2 >… wQ). Each of them is used 
in the Main Detection, but frequently some sections of 
the relative time series are used only. The algorithm of 
the relative time series selection is as follows: 

1. First the T1 series is used with its whole length. In 
this step section [y1,1,y1,2] of the candidate series is ho-
mogenised. 

2. When the first q relative time series has already 
been used, Tq+1 is applied for sections that a) lie within 
[yq+1,1,yq+1,2] and b) have not been homogenised with the 
first q relative time series. 

3. When Tq+1 is applied, the tails of the sections ho-
mogenised with the previous T series are often over-
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1 

1 

lapped. It means that when ag,e1 belongs to a section that 
has been homogenised previously, but ag,e1-1 has not, and 
e1 > yq+1,1, a d1-year long section after e1-1 is subdued 
again homogenisation. The usual length of this overlap is 
9 years, but an overlapping section is not allowed to ex-
tend over a) IHs detected in previous steps, b) ends of 
Tq+1 (i.e. yq+1,1 and yq+1,2). Let the first IH after e1 be de-
noted by k1 then the length of overlap is determined by 
Eqution (28). 

1 1 1 1,2min 9,  1, 1qd k e y e        (28) 

For tails that lie in the other ends of the previously 
homogenised sections (i.e. whose last point is e2), the 
overlap (d2) is calculated with the same logic (Eqution 
(29)). 

2 2 2 2 1,min 9,  , 1qd e k e y        (29) 

In Eqution (29) k2 stands for the first IH before e2. 
 
3.5. Secondary Detection 
 
In the Secondary Detection short-term IHs are searched 
in relative time series adjusted according to the results of 
the Main Detection. This operation is performed only 
when the maximum of accumulated anomalies in ad-
justed relative time series exceeds some predefined 
thresholds. Adjusted relative time series and the timing 
of the maximum of accumulated anomalies are denoted 
with T* and H*, respectively. T* is examined in its 
monthly resolution, and the section that is selected 
around H* is not allowed to be longer than 60 months. 

This section has two sub-sections, namely the search 
of the maximum of accumulated anomalies and the de-
tection of IHs around H*. 

 
3.5.1. Search of the Maximum of Accumulated 

Anomalies 
5-month and 10-month moving averages are calculated 
for the normalised anomalies of Tq

*. All the relative time 
series of the candidate series are used (q = 1,2,… Q). In 
eqs. (30) and (31) the calculation of accumulated anoma-
lies is shown for 5-month and 10-month periods, respec-
tively. 

 
* *2

,
, *

2

1
MA5

5 ( )

h
q h

q h
i h

t
b





 


  q

q

T

T
      (30) 

 
* *4

,
, *

5

1
MA10

10 ( )

h
q h

q h
i h

t
b





 


  q

q

T

T
      (31) 

Note that in Equtions (30) and (31) i is not allowed to 
be lower than 1 or higher than the number of months (nm) 
in Tq

*, therefore the conditions of 3 ≤ h ≤ nm-2 and 6 ≤ h 

≤ nm-4 have to be satisfied for Equtions (30) and (31), 
respectively. 

After having the accumulated anomalies (MA5(b) and 
MA10(b)) for each Tq

*, their maximums are determined. 
The maximums are calculated without sorting the accu-
mulated anomalies according to q, and in this way only 
two maximal values are obtained, one for MA5 and an-
other for MA10. In the present version, Secondary De-
tection is made only when max(MA5(b)) ≥ 2.0 or 
max(MA10(b)) ≥ 1.4. When exists a H* for which the 
former relation is satisfied, the timing of the maximum 
of 5-month anomalies is used, while the timing of the 
maximum of 10-month anomalies is used when only the 
latter relation is satisfied. 

 
3.5.2. Detection of IHs around the Maximum of 

Accumulated Anomalies 
 

a) Selection of relative time series 
A window is edited around H* and for that operation 

available data are needed in both sides of H*. Usually the 
Tq

* of the highest w is used for which at least 20 data are 
available in each side of H*. When non of the Tq

* series 
meet with this condition (because H* is close to one end 
of the candidate series), all the Tq

* series are examined 
again, with less strict conditions. In the second round the 
expected minimum of available data (in each side of H*) 
is 10, and in the third round (if that is necessary) the 
minimum threshold is 2 only. 

b) Edition of window around H* 
Usually a symmetric window [h1,h2] of 60 months 

length is edited around H*, but the window must not 
overlap IHs detected in earlier steps or any end of the Tq 
series, therefore it can be narrower than 60 months. Let 
suppose that K1 change-points has been detected in the 
earlier steps of the homogenisation procedure for section 
[1,H*] of the series, then the borders of the window are 
determined by Equtions (32) and (33). 

 1

*
1 max 29, 1,  1Kh H H        (32) 

 1

*
2 1min 30, ,Kh H H n  m      (33) 

c) Detection of IHs in windows 
The base of the detection process is again the Caussi-

nus – Mestre method. However, in the Secondary Detec-
tion the constant sections of step-function are substituted 
with harmonic functions of annual cycle for sections of 
longer than 9 months, and some other modifications also 
exist relative to the original Caussinus – Mestre method. 
The list of differences from the original method is as 
follows. 

1) Constant sections are substituted with harmonic 
function of annual cycle for sections longer than nine 
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months; 
2) The minimum distance between two change-points 

is 3 time-units, i.e. 3 months in this case, but Eqution (26) 
is applicable here otherwise; 

3) Maximum two change-points are allowed to be de-
tected in a window [h1,h2]. (K’ = 0, 1 or 2) 

Describing more detailed point i), Eqution (34) is ap-
plied for fitting harmonic function of annual cycle. 

 1

2π 2π
sin cos

12 12

1,

h k k A B

k k

m m
u c c

h H H

 



    


 



 ,   (34) 

cA and cB are general constants in the procedure, because 
they characterise the relation between the phase of the 
annual cycle and calendar month. Their values are set to 
have the modus of the harmonic functions at the solstices 
(cA = –0.1031, cB = –0.9947). Between two adjacent 
change-points, αk’ and βk’ are also constants, and their 
most proper values are searched with iteration. For find-
ing the best fitting model (K’, as well as the most appli-
cable timings of change-points), the function fitting of 
Eqution (34) must be applied for each subperiod of the 
examined window, then the model with the lowest 
Caussinus – Lyazrhi score is selected. This operation 
contains large number of calculations, but by applying an 
economic algorithm, the computation time is kept fairly 
short. 

In case of β’ = 0 the function is constant and this fact 
shows that the step-function is a special case of the func-
tion family applied here. 
 
3.6. Calculation of Adjustment Factors 
 
3.6.1. ANOVA 
The interaction of IHs of individual time series makes it 
necessary to calculate the precise adjustment-terms by an 
equation system. In ACMANT the ANOVA method is 
applied. In brief, the application of ANOVA to calculate 
adjustment-terms for correcting IHs, is based on the di-
vision of observed time series to three components, 
namely to climate effect, stations effect (IH) and noise. 
In [9] it is proved that the optimal estimation of adjust-
ment-terms is provided when the noise term is set to be 
zero in the equation system, thus the ANOVA provides 
the optimal estimation of adjustment-terms. The referred 
study also contains the detailed description of the appli-
cation of ANOVA in the homogenisation of climatic 
time series. 

In ACMANT the ANOVA operates within an auto-
matic procedure, therefore a special attention is needed 
to treat cases when the equation system has no determi-
nistic solution. It could occur when all the time series of 
a network (those that are comparable in the homogenisa-

tion procedure) have a change-point in the same time. In 
that case the behaviour of sections before and after the 
common change-point is independent. To avoid this case 
the smallest IH is cancelled if all time series show IH at 
the same time. 

In ACMANT the ANOVA is applied separately for 
two annual variables (i.e. for TM and TD), then the 
monthly correction-terms are derived from them (see 
Sect. 3.6.3). The ANOVA is applied after the Main De-
tection, then it is repeated after the Secondary Detection, 
and if the number of IHs is reduced at the end of the 
procedure relying on posterior tests, the application of 
ANOVA is repeated again. However, ANOVA is not 
applied during the pre-homogenisation, because it is not 
a tool for making step-by-step improvements in the 
dataset. 
 
3.6.2. Homogenisation-Adjustments during the 

Pre-Homogenisation 
After having the timings of IHs identified, adjustment- 
terms for executing homogenisation can be deduced di-
rectly from relative time series. Although a part of the 
detected biases can be caused by the impreciseness of 
reference series, adjustment-terms are always applied 
with its full content to the candidate series. 

The unified relative time series (T+) are used for cal-
culating temporary adjustments. Let suppose that for IH 
k* Equtions (35) and (36) show the shifts in TM and TD. 

* *k


 k 1 kTM TM *
        (35) 

* *k


 k 1 kTD TD *
        (36) 

If the number of detected IHs is K, the cumulated ef-
fect of IHs on the candidate series in year i, i ≤ k* is 
characterised by Equtions (37) and (38). 

 
*

K

i
k k

 


  k 1 kTM TM       (37) 


*

K

i
k k

 


  k 1 kTD TD 

c

      (38) 

 
3.6.3. Derivation of Monthly Correction-Terms 
If IH k* has the timing H(k*) in monthly scale and U 
denotes the adjustment-term, it can be given for any year 
i and month m within the period [H(k*-1)+1,H(k*)] by 
Eqution (39). Corrections from β are distributed among 
the calendar months in a way that the annual cycle is a 
harmonic function with its extreme values in the solstices, 
and the degree of changes in td satisfies Eqution (21). 
These conditions determine the monthly constants (cm) in 
Eqution (39). 

,
*

K

i m k m k
k k

u  


          (39) 

Copyright © 2011 SciRes.                                                                                  IJG 



P. DOMONKOS 
 

9

3.7. Outlier-Filtering 
 
Outlier filtering is applied two times in ACMANT, 
namely for raw time series first, then after some steps of 
the pre-homogenisation it is applied again. The applied 
method is the same in both cases, only one little differ-
ence will be mentioned below. 

Two operations are performed in this step. 
1) Anomalies with higher than 4 standard deviations 

are filtered according to Eqution (40).  

, , 4s q ht  s,q s,qT T          (40) 

For each series s and month h always the Ts,q of the 
highest w is selected which contains h. Note that in the 
first outlier-filtering the mean of Ts,q is considered to be 
0, because for differences of raw anomaly series the ex-
pected value is 0. 

2) If in a 10-month long period, more than one outliers 
of the same sign occur according to i), a confirmation is 
needed, because the accumulation of seeming outliers 
might be caused by large long-term variability. Therefore 
in this case a second operation is accomplished, in which 
potential outliers are examined with the statistical prop-
erties of the time-neighbourhood. Nineteen-month long 
windows are used for this purpose. The potential outlier 
is confirmed when the deviation from the win-
dow-average is larger than 3.5 standard deviation of the 
values within the window, but is not considered to be 
outlier in the reverse case (Eqution (41)). For this opera-
tion, again the relative time series of the highest w, but 
with available data around h is selected. 

  , 3.5q ht     q h 9,h 9 q h 9,h 9T T  

stage-codes are introduced. The code of raw time series 

r-filtered 
r-filtered 

outlier filtering 

during the 
pr

ed and two times outlier filtered 
ho- 

m
ed  

 
he algorithm of ACMANT 

omalies (Eqution (4)). 
on (5)). 

.2). 
Th

series (Eqution (10)) 
an

s-0 (Sects. 
3.

ing for each time series (Sect. 3.7), the 
re

ions are recalculated from series-1. 
e 

se

on 
nce series and their spatial 

co
e series (Sects. 3.3.1, 3.3.3) 

an

Detection (Sect. 3.4) for ranking 
tim

    (41) 

Note that when the number of available data is less 
than 9 in one side of the window, this calculation is made 
in a narrower window. In this case, if another Ts,q series 
(of lower w) contains data for a full-size window, the 
calculation is repeated with that data, and the results are 
overwritten by that. 
 
4. The Algorithm of ACMANT 

Homogenisation Method 
 
After the main functions of ACMANT have been de-
scribed, in this section the operation of the whole proce-
dure is presented. 

In the homogenisation procedure raw time series are 
converted several times (by interpolation, outlier-filtering, 
pre-homogenisation), thus they go through several stages 
before achieving their final form. During the procedure 
some earlier stages are preserved, and reused. To make 
distinctions among different stages of the same series 

is 0, and if the series does not have sufficient spatial cor-
relations with other time series it might remain un-
changed during the homogenisation procedure of the 
network. However, the gap-filling is done even for these 
series, thus the code 0 indicates raw but continuous time 
series. The meaning of the codes: 

0 – raw 
1 – outlie
2 – two times outlie
3 – pre-homogenised without 
4 – pre-homogenised and outlier-filtered 
4a – one time series is excluded 
e-homogenisation 
5 – pre-homogenis
5a – one time series is excluded during the pre-
ogenisation 
6 – homogenis

T
Part I: Preparation 

1. Calculation of an
2. Calculation of spatial correlations (Equti
3. Filling of data gaps in each time series (Sect. 3
e results are the series of code 0. 
4. Calculation of first difference 
d their spatial correlations (Eqution (11)).  
5. Creation of relative time series from serie
3.1 and 3.3.3). 
6. Outlier-filter
sults are series-1. 
7. Spatial correlat
8. Interpolation for substituting outliers for each tim
ries (Sect. 3.2). When an outlier was detected in a se-

ries g in the same year and month at which interpolation 
occurred in another series (s ≠ g) at step 3, its value is 
re-interpolated at this step. 

Part II: Pre-homogenisati
1. Calculation of first differe
rrelations from series-1.  
2. Creation of relative tim
d unified relative time series (in Sect. 3.3.4 in Eqs. 16 

and 17 p = 5). Type of candidate series: 1. Type of ref-
erence components: 1. 

3. Use of the Main 
e series according to the degree of inhomogeneous 

character. Let the timings of IH (k) be denoted by jk, the 
mean estimated bias of [jk+1,jk+1] by uk’, then an indica-
tor (z) of the degree of inhomogeneous character for sec-
tion [jk1+1,jk2] is calculated by Eqution (42). 

 

 

2

1

2
k 

1

1.2

2 1 1

k k
k k

k k

j j u

z
j j






  
 




        (42) 
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Maximums of z values are searched examining each 
possible k1 – k2 pair  (0 ≤ k1 ≤ k2 ≤ K), then time series 
are ordered according to their maximal 
actual form of Eqution 42 was chosen after some ex-
pe

posite has already been homoge-
ni

are sub-
tra re 
su

nce composites: 5a. 

 IHs for all time series. Then the least significant 
IH

 (43). 
z values. The 

riments regarding the efficiency achievable. – In this 
step multiple relative time series are used for determin-
ing the timings of IHs (as usual), but the T+ is used for 
calculating indicator z. 

Steps 4 - 7. compose a block that is accomplished for 
each series in the order determined in step 3. 

4. Calculation of relative time series. Type of candi-
date series: 1. Type of reference composites: 4a when the 
composite has already bean pre-homogenised, 1 other-
wise. 

5. Main Detection. 
6. Calculation of relative time series and T+ with the 

exclusion of one of the possible composites, p = 10. 
Type of candidate series: 1. Type of reference compos-
ites: 4 when the com

sed, 1 otherwise. 
7. Homogeneity-adjustments (Sects. 3.6.2 and 3.6.3). a) 

Input: series-0, adjustment-terms: from T+ of step 3, type 
of results series: 3; b) Input: series-1, adjustment-terms: 
from T+ of step 3, type of results series: 4; c) Input: se-
ries-1, adjustment-terms: from T+ of step 6, type of re-
sults series: 4a. 

8. Calculation of first difference series and their spatial 
correlations from series-4. 

9. Calculation of relative time series. This step pre-
pares the repetition of outlier-filtering, and for this rea-
son the candidate series are without previous out-
lier-filtering. Type of candidate series: 3. Type of refer-
ence composites: 4. 

10. Outlier-filtering. The results are series-5. 
11. Calculation of spatial correlations from series-5. 
12. Recalculation of interpolated values using series-4. 

The primer results are series-5. Then from the interpo-
lated values the homogenisation-adjustments 

cted, and with these values the outliers in series-0 a
bstituted. The results are series-2. 
13. Calculation of relative time series and T+ with the 

exclusion of one of the possible composites, p = 30. 
Type of candidate series: 2. Type of reference compos-
ites: 5. 

14. Homogenisation-adjustments (Sects. 3.6.2 and 
3.6.3). Input: series-2, adjustment-terms: from T+ of step 
13, type of result series: 5a. 

Part III: Homogenisation 
Note: In this part unified relative time series are not 

used. 
1. Calculation of relative time series. Type of candi-

date series: 2. Type of refere
2. Main Detection. 

3. Exclusion of one IH, if there occurs a common tim-
ing of

 is selected, based on the calculations of indicator z* 
around the timings of the common IH (k), Eqution

   1 1 0* k k k kz j j c2 2 2           (43) 

In Eqution (43) αk and βk are determined with Equtions 
(35) and (36). The smallest z* indicates the least signifi-
cant IH, then that is excluded from the list of detected 
IHs. 

4. Refining timings of IHs in monthly tim
th

p 1 are used in monthly resolution. – The first esti-
m

-winter differ-
en

e scale. In 
e Main detection annual characteristics are used only, 

so the timings of IHs cannot be assessed with monthly 
preciseness from that. Here, the relative time series (T) 
of ste

ation for the timing of IH k is taken from step 2, and it 
is the December of the year (j) detected. Then two-phase 
harmonic functions are fitted in a 48-month wide win-
dow centred at December of year j. This fitting is made 
in the same way as for the Secondary Detection (Eqution 
(34)), but here the number of change-points is fixed to be 
1 within the window. Further limitation is that the timing 
of the change-point is searched up to 12 months distance 
from the centre of the window. – For the calculations of 
this step always the Tq of the highest w is selected that 
contains the 48-month window around jk. 

5. Calculation of correction-terms with ANOVA. In-
put field: series-2 and timings of IHs from steps 2-4. This 
step consists of three operations: a) ANOVA for correc-
tion-terms in annual means (TM) (Sect. 3.6.1); b) 
ANOVA for correction-terms in summer

ces (TD) (Sect. 3.6.1); c) Calculation of monthly cor-
rection-terms (Sect. 3.6.3). – In ACMANT the input 
variables are introduced to ANOVA in monthly resolu-
tion, as at this phase of the procedure the timings of IHs 
are available with monthly preciseness. Problems do not 
occur in calculating α, since the calendar months are 
nearly evenly distributed between any two adjacent 
change-points. By contrast, the summer-winter differ-
ence is a characteristic which has no values in monthly 
time-scale. The problem is tackled by applying moving 
weighted averages of monthly anomalies, providing 
monthly values in this way for ANOVA calculations 
(Eqution (44)). 

      
* 5

, 6 6
* 5

0.5
H

j m H Hm H m H m H
H H

td c a c c a


 
 

        (44) 

Examining Eqution (44) it can be seen that TD’ char-
acterises the summer-winter difference, and it has 
monthly values. Values for cm’ are set in harmony with 
Eqution (21), (c1’= –1/3.5, c2’= –0.5/3.5, etc.). 

6. Application of homogenisation-adjustments on rela-
tive time series of step 1. Each Tg,q (q = 1,2,… Q) is ad-
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s are ful-
fil

relative time series. 
(S

s with ANOVA. The 
on

ies-2. The 
re

A calculations. They are removed, and the 
A

ly as long as there is no insignificant 
IH ons. 

ssigned are presented 
by

rd deviation of the relative 
time series in which k was detected. L
l2 be denoted by l, then statistic 
Eqution (47). 

justed with the adjustment-factors determined by step 5 
for series g. The results are T*. 

Steps 7 and 8 compose a block whose step
led cyclically as long as inner indicators show the ne-

cessity of the continuation of the cycle. 
7. Calculation of the maximums of accumulated and 

normalised anomalies in adjusted 
ect. 3.5.1). If one of the maximums exceeds the 

pre-defined thresholds, step 8 follows, otherwise the 
procedure continues with step 9.  

8. Secondary Detection (Sect. 3.5.2). Step 7 follows, 
but before that the section of time series that has already 
subdued to Secondary Detection, is excluded from fur-
ther examinations of accumulated anomalies. 

9. Calculation of correction term
ly difference relative to step 5 is that here the list of 

IHs is supplied with the result of the Secondary Detec-
tion. 

10. Application of correction-terms on ser
sults are series-6. 
Part IV. Final adjustments 
Some IHs might turn out to be insignificant after the 

ANOV
NOVA is repeated with the rest of the IHs. These steps 

are fulfilled cyclical
 after the ANOVA calculati
1. The significance of each IH (k) is controlled with 

t-test. The size of IH is characterised by the sum of ab-
solute values of αk and c0βk where αk and βk are deter-
mined with Equtions (35) and (36). Series-6 are used. 
The periods to which the shift is a

 Equtions (45) and (46).  

1 1k kl H H               (45) 

2 1k kl H H                (46) 

The standard deviation for both periods is considered 
to be the same as the standa

et the sum of l1 and 
p* can be given by 

   0 1 2 2

udes β, while σ characterises the 
standard deviation of α only. – In the present application, 
thresholds for selecting significant IHs equal t
lar thresholds (depending on l) for the 0.05 significance 
le

tion of correction-terms on series-2. The 
re

homogenised anomalies and V stands for ho-
m

*
k kc l l l

p
l

 


 
      (47) 

Note that p* differs from regular t-statistics of l-2 
freedom because it incl

o the regu-

vel. If at least 1 IH is excluded, step 2 follows, other-
wise step 4. 

2. Calculation of correction terms with ANOVA. The 
only difference relative to step 5 of Part III is, that here 
the list of IHs is altered relative to the previous calcula-

tions. 
3. Applica
sults are series-6. Step 1 follows. 
4. Long-term means of monthly temperatures are 

added to the homogenised anomalies (Eqution (48)). a* 
marks 

ogenised temperature series. 

*
, , , , , ,

1,

sn1
s j m s j m s i m

is m

v a x
n 

 
         (48) 

 
5. Verification 
 
5.1. Test-Datasets 
 

 the COST HOME action (COST ES0601) a bench-
known artificial IHs was built by a 

roup of experts, and was announced [26] for the clima-
omparing the results of dif-

rent homogenisation methods. This benchmark consists 

e benchmark contains networks of 15 
tim

fference is that 
in

calculated for some sta-
tistical characteristics of raw time series (WR) and for that 

). Then the efficiencies 

In
mark dataset with 
g
tological community, for c
fe
of 40 networks of 100-year long series of simulated 
monthly temperatures, 40 networks of simulated precipi-
tation data and some networks with real observed data. 
For verification purpose only the simulated temperature 
data are used in this study, since in datasets of real ob-
servations the properties of inhomogeneities are never 
known perfectly, thus exact verification cannot be per-
formed for them. 

Half of the simulated networks was generated with 
white noise background (synthetic data), while in the 
other half of the networks the background noise mimics 
the low-frequency variability of time series better (sur-
rogated data). Th

e series (25%), networks of 9 time series (25%) and 
networks of 5 time series (50%). The spatial correlations 
are high (often higher than 0.8) what is typical for tem-
perature networks of the last 100-150 years observations 
in Europe and the US. The frequency of IHs varies 
widely, but most networks contain a few large IHs and a 
lot of small IHs. See more details in [26]. 

In this study another test dataset is also used. It con-
sists of 100 surrogated and 100 synthetic networks of 
monthly temperature data. This dataset (referred as 
benchmark-2 hereafter) was created exactly in the same 
way as the benchmark dataset, the only di

 benchmark-2 all the networks contain 9 time series 
(50%) or 15 time series (50%). 

 
5.2. Evaluation of efficiency 

 
The root mean squared error (RMSE) caused by IHs or 
imperfect homogenisation was 

of homogenised time series (WH
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were calculated by Eqution (49). 

P. DOMONKOS 

R H

R

W W
Eff

W


           (49) 

The verified characteristics are: a) RMSE of monthly 
biases, b) RMSE of biases in annual means, and c) 
RMSE of slope-biases in the linear trend for the entire 
period of time series. 
 
5.

cipants of COST event, and some 
f the results have been published [27]. It was found that 

ANT is one among the most 
ffective homogenisation methods. However, the author 

f trend-slope estimation increased from 
0.

ark 
(F

be

], 
9]. Notwithstanding, the application of homogenisation 

taset as the benchmark of 
e COST HOME offered and offers further opportuni 

g the annual cycle of radia- 
tio

3. Efficiency Results 
 
In January of 2010 the first evaluation of efficiencies was 
presented for the parti
o
the performance of ACM
e
has found problems with the reliability of climatic trend 
estimation of that version (ACMANTv0), particularly 
when the method was used for homogenising small net-
works (N = 5). After the causes of the bias have been 
identified, some modifications were made in ACMANT. 
The present version (ACMANTv1, February, 2011) that 
is described in this study contains several modifications 
relative to ACMANTv0. In the ACMA- NTv0 neither 
ANOVA, nor unified relative time series were used for 
calculating correction-terms, but those terms were calcu-
lated using the same relative time series as in which the 
IHs were detected. The lack of harmonisation among 
individual assessments may cause accumulated biases in 
the estimation of long term trends. Another change is 
that in ACMANTv1 the modus of the annual cycle coin-
cide with solstices, why in ACMA- NTv0 they were in 
mid-January and mid-July. However, in the bench-
mark-homogenisation I still used the seasonal cycle of 
the earlier version, because it provides the best results for 
the benchmark. 

The ACMANTv1 produces better results than the 
ACMANTv0 not only in the trend estimation, but also in 
the reconstructions of other statistical properties of time 
series. For the 40 simulated networks of the benchmark 
the efficiency o

400 to 0.745, that of the annual mean temperatures 
increased from 0.516 to 0.661, and that of the monthly 
mean temperatures increased from 0.434 to 0.553. 

As since February 2010 I know the true positions of 
IHs in the benchmark, another test dataset, the bench-
mark-2 was used for the validation of ACMANTv1. 
Surprisingly, the results for benchmark-2 are slightly 
even better, than the results for the former benchm

igure 1). When the values for Figure 1 were calcu-
lated, the small networks (N = 5) of the benchmark were 
excluded, for using test-datasets of the same statistical 
properties. It can be seen that (i) for relatively large net-

works even the ACMANTv0 performed quite well, (ii) 
the ACMANTv1 has always better efficiency than the 
ACMANTv0, (iii) the blind-test results are slightly even 
better than the results achieved in the benchmark, (iv) the 
results are better when synthetic data are homogenised in 
comparison with the homogenisation of surrogated net-
works, (v) the efficiency in reducing the monthly RMSE 
is slightly poorer than the reduction of the annual RMSE. 

The author cannot explain why the efficiency results 
are better for the benchmark-2 than for the benchmark. 
The opposite relation should be expected, since the 
ACMANTv1 contains some semi-empirical parameters 
which were assumed based on experiments with the 

nchmark. Perhaps the 20 networks of the benchmark 
that were used for Figure 1 frequently contain difficult 
coincidences of IH and noise-terms by accident, in com-
parison with the mean properties of the much larger 
benchmark-2. Anyhow, the achieved performance is out-
standingly high. The author does not know other ho-
mogenisation method with similar or better efficiency. 
 
6. Discussion and conclusion 
 
The development of ACMANT relies on previous an- 
alyses of efficiencies of homogenisation methods [28
[2
methods on such a complete da
th
ties to reveal the efficiency characteristics of methods. 
This study restricts to discuss characteristics whose im- 
pacts to the efficiency of ACMANT are unambiguous. 
Seven favourable characteristics and three still existing 
shortcomings are discussed: 

1) IH-sizes of temperature series usually have seasonal 
cycle. It is caused by the fact that most of the IHs have 
relation to the change of radiation-sheltering or other 
radiation effects, and these effects are larger in summer 
than in winter. Thus, followin

n intensity, most of temperature IH sizes have 
quasi-harmonic cycle. The benchmark of COST HOME 
contains these seasonal changes of IHs rather realistically. 
The ACMANT applies a bi-variable test for detect IHs, 
one variable is the annual mean (TM), and the other is 
the summer - winter difference (TD). This way of detec- 
tion is very effective, because a) The two variables often 
have change-points with the same timings, thus the sig- 
nal/noise ratio is better in a unified tests; b) The use of 
summer-winter difference is more effective, than the use 
of seasonal or monthly means, because the signal/noise 
ratio is relatively low for the summer - winter difference 
(TD is calculated from the values of eight monthly 
means, and the noise decreases with the increase of the 
number of averaged values); c) Distinct analyses of sea- 

Copyright © 2011 SciRes.                                                                                  IJG 



P. DOMONKOS 
 

Copyright © 2011 SciRes.                                                                                  IJG 

13

 

0

10

20

30

40

50

60

70

80

90

100

%

 

0

10

20

30

40

50

60

70

80

90

100

%

 

0

10

20

30

40

50

60

70

80

90

100

SUR SYN

%

ACMANTv0 ACMANTv1 ACMANTv1-blind
 

Figure 1. Efficiency in reducing the RMSE of monthly biases caused by IHs or imperfect homogenisation. Results for 
ACMANTv0, ACMANTv1-benchmark and ACMANTv1- benchmark-2 are presented by dotted, striped and filled fields, 
respectively. Upper part: RMSE of monthly values; mid-part: RMSE of annual means, bottom: RMSE of tre d-slopes. n
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m

ing networks comprising large 
nu

Th
3) of University 

a for 
roviding access to dataset benchmark-2. 

. References 

e 
 variables is stochastically larger than the 
ath. Stat., Vol 18, 1947, pp. 50-60. 

 
sonal and monthly series may result in set of detected 
change-points with poor seasonal coherence. In that case, 
fter having the primer results, a harmonisation is neces-

affected by the errors of earlier steps.  
2) The ACMANT is a purely statistical procedure, 

now it is impossible to use metadata (documental ia
sary to obtain a realistic description of IH properties. 
Considering that that harmonisation needs further esti-
mations loaded with uncertainties, it might cause biases 
in the result. In contrast, when TM and TD are examined, 
such a harmonisation is unnecessary, because the sea-
sonal cycles of IHs can be derived directly from the de-
tection result. 

2) One base of the development is the Caussinus - 
Mestre detection method. Verification results show that 
the Caussinus 

st among the existing methods [29]. 
3) According to some tests fulfilled with the Caussinus 

- Mestre detection method, its performance has turned 
out to be better, when detection of IHs with

time units is not allowed. It is likely, because noise can 
produce IH-shaped changes in the very short time-scale 
more frequently than in longer time-scale. The 
ACMANT applies this experience. 

4) In ACMANT the ANOVA is applied for calculating 
corrections which method provides the optimal estima-
tions of correction-terms. 

5) The pre-homogenisation of reference components is 
favourable when information specific for the connection 
between the candidate se

ilised in that step. The pre-homogenisation included in 
ACMANT improves the certainty of the estimation of 
number of IHs and that of the timings of IHs. 

6) When the assessment of IH-positions are relatively 
confident at least for large-size IHs, the applied method 
for finding the timings of IHs in monthly tim

ves improvement. Note that according to some ex-
periments with the COST-benchmark, the application of 
the same technique in an earlier phase of the procedure 
for assessing timings with monthly preciseness did not 
result in any improvement of efficiency. 

7) The calculation of correction-terms with ANOVA 
may show that some IHs which seemed to be significant 
in the detection process, do not have sig

al results. With the exclusion of the insignificant IHs 
(their percentage was approximately 10% when the 
COST-benchmark was used) a better estimation of cor-
rection-terms can be provided basing on the significant 
IHs only. 

Three shortcomings still wait for the application of 
further developments. 

1) The 
ort-term but large-size IHs. However, as it operates 

after the Main Detectio
ction have errors due to unfiltered large-size, short- 

term IHs, b) the results of the Secondary Detection are 

mation of technical or environmental changes in the ob-
servation) information within ACMANT. However, the 
author thinks that the potential usability of metadata is 
limited when the spatial density and sp

 data is appropriate to perform statistical homogenisa-
tion, since metadata do usually not contain quantitative 
information about the degree of local effects. 

3) The present method is applicable for monthly tem-
peratures from mid- or high-latitudes, and is not applica-
ble for other climatic variables. The ACMANT contains 
innovations whose application would likely be useful for 
homogenising other variables than monthly temperatures, 
therefore further developments of homogeni

ods are needed. 
A task for the future is, to apply efficiency-tests of 

wider properties of time series and data networks than 
which are provided by the COST-benchmark. The para- 
meterisation of ACMANT has to be checked or modified 
relying on further tests. 

Summarising, th
ethod which has been developed for homogenising 

mid- and high-latitude temperature series of observing 
networks. It has outstanding efficiency among statistical 
homogenisation methods. Its use is particularly recom-
mended for homogenis

mber of time series with sufficient spatial correlations, 
since the ACMANT is a fully automatic method. 

The executable file of ACMANTv1 together with its 
user-guide is freely downloadable from 
http://www.c3.urv.cat/members/pdomonkos.html. 
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Appendix: Explanation of Symbols and 
Acronyms 
 
The list below contains the explanation of symbols those 
are used throughout the paper. Note that one can find 
further explanations in the text about contemporary use 
of variables, as well as about some constants and pa-
rameters whose role varies in the paper. Bold capital 
letter marks vector or matrix variable.  
A  - anomaly 
∆A  - first difference (increment) of anomalies 
A*  - adjusted anomaly 
B  - normalised anomaly 
F  - reference series 
g  - index of candidate series 
G   - penalty term 
h   - serial number of month in a series 
hn   - first month of a series 
hx   - last month of a series 
H   - timing of change-point in months 
H*   - timing of selected change-point (in months) 
j   - year 
k    - serial number of change-point or that of section 
   in fitted function 
K   - total number of detected change-points for a time 
series 
K’   - number of detected change-points for a section 
of a time series 
l,L   - length of series in a selected examination  
m   - calendar month 
n   - whole length of time series in years 
n’   - number of observed values in time series 
N   - number of stations 
nm   - length of relative time series in months 
p*   - statistic of t-test 
q   - serial number of relative time series 
Q   - number of reference series for a specified candi-
date series  
R   - spatial correlation between first difference series 
R’   - spatial correlation 
s   - station 

S   - number of components of  reference series 
T   - relative time series 
T+   - unified relative time series  
T*   - corrected relative time series 
TM  - annual mean 
TD   - summer-winter difference 
U   - correction-term 
u’   - summarised impact / correction-term belongs to 
some selected IHs  
V   - homogenised temperature 
w   - sum of the squared correlations of reference 
components 
WR   - error-term for raw time series 
WH   - error-term for homogenised time series 
X    - raw time series 
Y1   - first year of relative time series 
Y2   - last year of relative time series 
z, z*  - indicator of significance of IHs 
α    - shift in annual means at an IH 
β    - shift in summer-winter differences at an IH 
σ    - standard deviation 
 
ACMANT – Homogenisation method developed by the 
author: Adapted Caussinus-Mestre Algorithm for ho-
mogenising Networks of Temperature series. 
ACMANTv0 – The version of ACMANT that took part 
in the blind test experiment of the COST HOME. 
ACMANTv1 – The version of ACMANT that is de-
scribed in this paper. 
ANOVA – Equation-system based calculation method of 
correction-terms for homogenising time series. 
COST HOME / COST ES0601 – International scientific 
action on the development and testing of homogenisation 
methods. It is sponsored by the European Union. 
IH – Inhomogeneity: technical-born bias from the true 
climate in the series of observed data. 
MA – moving average  
PRODIGE – Homogenisation method that was devel-
oped by Caussinus and Mestre (2004). 
RMSE – Root mean squared error. 
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